% % kurven.tex -- slide template % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % \bgroup \begin{frame}[t] \setlength{\abovedisplayskip}{5pt} \setlength{\belowdisplayskip}{5pt} \frametitle{Kurven und Tangenten} \vspace{-20pt} \begin{columns}[t,onlytextwidth] \begin{column}{0.48\textwidth} \begin{block}{Kurven} Kurve in $\mathbb{R}^n$: \vspace{-12pt} \[ \gamma \colon I=[a,b] \to \mathbb{R}^n : t\mapsto \gamma(t) \uncover<2->{ = \begin{pmatrix} x_1(t)\\ x_2(t)\\ \vdots\\ x_n(t) \end{pmatrix} } \] \vspace{-15pt} \begin{center} \begin{tikzpicture}[>=latex,thick] \coordinate (A) at (1,0.5); \coordinate (B) at (4,0.5); \coordinate (C) at (2,2.2); \coordinate (D) at (5,2); \coordinate (E) at ($(C)+(80:2)$); \draw[color=red,line width=1.4pt] (A) to[in=-160] (B) to[out=20,in=-100] (C) to[out=80] (D); \fill[color=red] (C) circle[radius=0.06]; \node[color=red] at (C) [left] {$\gamma(t)$}; \uncover<4->{ \draw[->,color=blue,line width=1.4pt,shorten <= 0.06cm] (C) -- (E); \node[color=blue] at (E) [right] {$\dot{\gamma}(t)$}; } \uncover<2->{ \draw[->] (-0.1,0) -- (5.9,0) coordinate[label={$x_1$}]; \draw[->] (0,-0.1) -- (0,4.3) coordinate[label={right:$x_2$}]; } \end{tikzpicture} \end{center} \end{block} \end{column} \begin{column}{0.48\textwidth} \uncover<4->{% \begin{block}{Tangenten} Ableitung \[ \frac{d}{dt}\gamma(t) = \dot{\gamma}(t) = \begin{pmatrix} \dot{x}_1(t)\\ \dot{x}_2(t)\\ \vdots\\ \dot{x}_n(t) \end{pmatrix} \] \uncover<5->{% Lineare Approximation: \[ \gamma(t+h) = \gamma(t) + \dot{\gamma}(t) \cdot h + o(h) \]}% \vspace{-10pt} \begin{itemize} \item<6-> Sinnvoll, weil sowohl $\gamma(t)$ und $\dot{\gamma}(t)$ in $\mathbb{R}^n$ liegen \item<7-> Gilt auch für \[ \operatorname{GL}_n(\mathbb{R}) \uncover<8->{\subset M_n(\mathbb{R})} \uncover<9->{ = \mathbb{R}^{n\times n}} \] \end{itemize} \end{block}} \end{column} \end{columns} \end{frame} \egroup