% % parameter.tex -- Parametrisierung der Matrizen % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % \bgroup \definecolor{darkgreen}{rgb}{0,0.6,0} \definecolor{darkyellow}{rgb}{1,0.8,0} \begin{frame}[t] \setlength{\abovedisplayskip}{5pt} \setlength{\belowdisplayskip}{5pt} \frametitle{Drehungen Parametrisieren} \vspace{-20pt} \begin{columns}[t,onlytextwidth] \begin{column}{0.4\textwidth} \begin{block}{Drehung um Achsen} %\vspace{-12pt} \begin{align*} \uncover<2->{ D_{x,\alpha} &= \begin{pmatrix} 1&0&0\\0&\cos\alpha&-\sin\alpha\\0&\sin\alpha&\cos\alpha \end{pmatrix} } \\ \uncover<3->{ D_{y,\beta} &= \begin{pmatrix} \cos\beta&0&\sin\beta\\0&1&0\\-\sin\beta&0&\cos\beta \end{pmatrix} } \\ \uncover<4->{ D_{z,\gamma} &= \begin{pmatrix} \cos\gamma&-\sin\gamma&0\\\sin\gamma&\cos\gamma&0\\0&0&1 \end{pmatrix} } \intertext{\uncover<5->{beliebige Drehung:}} \uncover<5->{ D &= D_{x,\alpha} D_{y,\beta} D_{z,\gamma} } \end{align*} \end{block} \end{column} \begin{column}{0.56\textwidth} \uncover<6->{% \begin{block}{Drehung um $\vec{\omega}\in\mathbb{R}^3$: 3-dimensional} \uncover<7->{% $\omega=|\vec{\omega}|=\mathstrut$Drehwinkel } \\ \uncover<8->{% $\vec{k}=\vec{\omega}^0=\mathstrut$Drehachse } \[ \uncover<9->{ {\color{red}\vec{x}} \mapsto } \uncover<10->{ ({\color{darkyellow}\vec{x} -(\vec{k}\cdot\vec{x})\vec{k}}) \cos\omega + } \uncover<11->{ ({\color{darkgreen}\vec{x}\times\vec{k}}) \sin\omega + } \uncover<9->{ {\color{blue}\vec{k}} (\vec{k}\cdot\vec{x}) } \] \vspace{-40pt} \begin{center} \begin{tikzpicture}[>=latex,thick] \uncover<9->{ \node at (0,0) {\includegraphics[width=\textwidth]{../slides/7/images/rodriguez.jpg}}; \node[color=red] at (1.6,-0.9) {$\vec{x}$}; \node[color=blue] at (0.5,2) {$\vec{k}$}; } \uncover<11->{ \node[color=darkgreen] at (-3,1.1) {$\vec{x}\times\vec{k}$}; } \uncover<10->{ \node[color=yellow] at (2.2,-0.2) {$\vec{x}-(\vec{x}\cdot\vec{k})\vec{k}$}; } \end{tikzpicture} \end{center} \end{block}} \end{column} \end{columns} \vspace{-15pt} \uncover<5->{% {\usebeamercolor[fg]{title}Dimension:} $\operatorname{SO}(3)$ ist eine dreidimensionale Gruppe} \end{frame} \egroup