% % viktorlie.tex -- slide template % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % \bgroup \definecolor{darkgreen}{rgb}{0,0.6,0} \begin{frame}[t] \setlength{\abovedisplayskip}{5pt} \setlength{\belowdisplayskip}{5pt} \frametitle{Vektorprodukt als Lie-Algebra} %\vspace{-10pt} \centering \begin{tikzpicture}[>=latex,thick] \arraycolsep=2.4pt \def\Ax{0} \def\Ux{4.1} \def\Kx{7.2} \def\Rx{13.1} \def\Lx{2.2} \def\Ly{0} \def\Lz{-2.2} \fill[color=red!20] (\Ax,{\Lx-1.55}) rectangle ({\Ux-0.1},{\Lx+0.55}); \fill[color=red!20] (\Ux,{\Lx-1.55}) rectangle ({\Kx-0.1},{\Lx+0.55}); \fill[color=red!20] (\Kx,{\Lx-1.55}) rectangle ({\Rx},{\Lx+0.55}); \fill[color=darkgreen!20] (\Ax,{\Ly-1.55}) rectangle ({\Ux-0.1},{\Ly+0.55}); \fill[color=darkgreen!20] (\Ux,{\Ly-1.55}) rectangle ({\Kx-0.1},{\Ly+0.55}); \fill[color=darkgreen!20] (\Kx,{\Ly-1.55}) rectangle ({\Rx},{\Ly+0.55}); \fill[color=blue!20] (\Ax,{\Lz-1.55}) rectangle ({\Ux-0.1},{\Lz+0.55}); \fill[color=blue!20] (\Ux,{\Lz-1.55}) rectangle ({\Kx-0.1},{\Lz+0.55}); \fill[color=blue!20] (\Kx,{\Lz-1.55}) rectangle ({\Rx},{\Lz+0.55}); \coordinate (A) at (\Ax,3.2); \coordinate (Ax) at (\Ax,\Lx); \coordinate (Ay) at (\Ax,\Ly); \coordinate (Az) at (\Ax,\Lz); \node at (A) [right] {\usebeamercolor[fg]{title}Drehmatrix, $\operatorname{SO}(n)$\strut}; \node at (Ax) [right] {$\displaystyle\tiny D_{x,\alpha}=\begin{pmatrix} 1&0&0\\ 0&\cos\alpha&-\sin\alpha\\ 0&\sin\alpha&\cos\alpha \end{pmatrix}$}; \node at (Ay) [right] {$\displaystyle\tiny D_{y,\alpha}=\begin{pmatrix} \cos\alpha&0&\sin\alpha\\ 0&1&0\\ -\sin\alpha&0&\cos\alpha \end{pmatrix}$}; \node at (Az) [right] {$\displaystyle\tiny D_{z,\alpha}=\begin{pmatrix} \cos\alpha&-\sin\alpha&0\\ \sin\alpha&\cos\alpha&0\\ 0&0&1 \end{pmatrix}$}; \coordinate (U) at (\Ux,3.2); \coordinate (Ux) at (\Ux,\Lx); \coordinate (Uy) at (\Ux,\Ly); \coordinate (Uz) at (\Ux,\Lz); \coordinate (Ex) at (\Ux,{\Lx-1}); \coordinate (Ey) at (\Ux,{\Ly-1}); \coordinate (Ez) at (\Ux,{\Lz-1}); \uncover<2->{ \node at (U) [right] {\usebeamercolor[fg]{title}Ableitung, $\operatorname{so}(n)$\strut}; \node at (Ux) [right] {$\displaystyle\tiny U_x=\begin{pmatrix*}[r] 0&0&0\\ 0&0&-1\\ 0&1&0 \end{pmatrix*} $}; \node at (Uy) [right] {$\displaystyle\tiny U_y=\begin{pmatrix*}[r] 0&0&1\\ 0&0&0\\ -1&0&0 \end{pmatrix*} $}; \node at (Uz) [right] {$\displaystyle\tiny U_z=\begin{pmatrix*}[r] 0&-1&0\\ 1&0&0\\ 0&0&0 \end{pmatrix*} $}; } \uncover<9->{ \node at (Ex) [right] {$\displaystyle \, e_x = \tiny\begin{pmatrix}1\\0\\0\end{pmatrix} $}; \node at (Ey) [right] {$\displaystyle \, e_y = \tiny\begin{pmatrix}0\\1\\0\end{pmatrix} $}; \node at (Ez) [right] {$\displaystyle \, e_z = \tiny\begin{pmatrix}0\\0\\1\end{pmatrix} $}; } \coordinate (K) at (\Kx,3.2); \coordinate (Kx) at (\Kx,\Lx); \coordinate (Ky) at (\Kx,\Ly); \coordinate (Kz) at (\Kx,\Lz); \coordinate (Vx) at (\Kx,{\Lx-1}); \coordinate (Vy) at (\Kx,{\Ly-1}); \coordinate (Vz) at (\Kx,{\Lz-1}); \uncover<3->{ \node at (K) [right] {\usebeamercolor[fg]{title}Kommutator\strut}; \node at (Kx) [right] {$\displaystyle \begin{aligned} [U_y,U_z] &\uncover<4->{= {\tiny \begin{pmatrix} 0&0&0\\ 0&0&0\\ 0&1&0 \end{pmatrix}} \uncover<5->{\mathstrut- \tiny \begin{pmatrix} 0&0&0\\ 0&0&1\\ 0&0&0 \end{pmatrix}}} \uncover<6->{=U_x} \end{aligned} $}; } \uncover<7->{ \node at (Ky) [right] {$\displaystyle \begin{aligned} [U_z,U_x] &= {\tiny \begin{pmatrix} 0&0&1\\ 0&0&0\\ 0&0&0 \end{pmatrix} - \begin{pmatrix} 0&0&0\\ 0&0&0\\ 1&0&0 \end{pmatrix}} =U_y \end{aligned} $}; } \uncover<8->{ \node at (Kz) [right] {$\displaystyle \begin{aligned} [U_x,U_y] &= {\tiny \begin{pmatrix} 0&0&0\\ 1&0&0\\ 0&0&0 \end{pmatrix} - \begin{pmatrix} 0&1&0\\ 0&0&0\\ 0&0&0 \end{pmatrix}} =U_z \end{aligned} $}; } \uncover<10->{ \node at (Vx) [right] {$\displaystyle \phantom{]}e_y\times e_z = e_x$}; } \uncover<11->{ \node at (Vy) [right] {$\displaystyle \phantom{]}e_z\times e_x = e_y$}; } \uncover<12->{ \node at (Vz) [right] {$\displaystyle \phantom{]}e_x\times e_y = e_z$}; } \end{tikzpicture} \end{frame} \egroup