% % spanningtree.tex % % (c) 2019 Prof Dr Andreas Müller, Hochschule Rapperswil % \bgroup \begin{frame} \frametitle{Spannbäume} \vspace{-16pt} \begin{columns}[t] \begin{column}{0.40\hsize} \begin{block}{Netzwerk} Alle Knoten erreichen, Schleifen vermeiden $\Rightarrow$ Spannbaum \vspace{-15pt} \begin{center} \begin{tikzpicture}[>=latex,scale=0.18] \coordinate (A) at ( 1.2927,-15.0076); \coordinate (B) at ( 5.0261,- 7.7143); \coordinate (C) at ( 4.9260,-13.0335); \coordinate (D) at (12.2094,-22.9960); \coordinate (F) at (17.8334,-13.4687); \coordinate (G) at ( 6.4208,-10.2438); \coordinate (H) at (17.2367,- 3.1047); \coordinate (K) at (24.3760,- 3.0293); \coordinate (L) at (23.2834,- 1.3563); \coordinate (M) at (28.7093,- 4.0627); \fill (A) circle[radius=0.5]; \fill (B) circle[radius=0.5]; \fill (C) circle[radius=0.5]; \fill (D) circle[radius=0.5]; \fill (F) circle[radius=0.5]; \fill (G) circle[radius=0.5]; \fill (H) circle[radius=0.5]; \fill (K) circle[radius=0.5]; \fill (L) circle[radius=0.5]; \fill (M) circle[radius=0.5]; %\uncover<1-4>{ %\node at (A) [above] {$A$}; %\node at (B) [above] {$B$}; %\node at (C) [below] {$C$}; %\node at (D) [below] {$D$}; %\node at (F) [below right] {$F$}; %\node at (G) [above] {$G$}; %\node at (H) [above] {$H$}; %\node at (K) [above right] {$K$}; %\node at (L) [above] {$L$}; %\node at (M) [above] {$M$}; %} \uncover<5->{ \node at (A) [above] {$1$}; \node at (B) [above] {$2$}; \node at (C) [below] {$3$}; \node at (D) [below] {$4$}; \node at (F) [below right] {$5$}; \node at (G) [above] {$6$}; \node at (H) [above] {$7$}; \node at (K) [above right] {$8$}; \node at (L) [above] {$9$}; \node at (M) [above] {$10$}; } \draw (L)--(H); \draw (L)--(K); \draw (L)--(M); \draw (H)--(B); \draw (H)--(G); \draw (H)--(F); \draw (H)--(K); \draw (K)--(F); \draw (K)--(M); \draw (M)--(F); \draw (M)--(D); \draw (B)--(A); \draw (B)--(C); \draw (B)--(G); \draw (G)--(C); \draw (G)--(F); \draw (F)--(D); \draw (C)--(F); \draw (C)--(A); \draw (C)--(D); \draw (A)--(D); \uncover<2>{ \draw[line width=2pt,join=round] (A)--(D)--(C)--(F)--(G)--(B)--(H)--(K)--(L)--(M); } \uncover<3>{ \draw[line width=2pt,join=round] (M)--(D)--(A)--(C)--(G)--(B)--(H)--(L)--(K)--(F); } \uncover<4->{ \draw[line width=2pt] (M)--(K)--(L)--(H)--(F)--(D); \draw[line width=2pt] (F)--(G)--(C)--(A); \draw[line width=2pt] (G)--(B); } \end{tikzpicture} \end{center} \vspace{-10pt} Wieviele Spannbäume gibt es? \end{block} \end{column} \begin{column}{0.56\hsize} \uncover<5->{% \begin{block}{Laplace-Matrix} %\vspace{-15pt} \[ L= \tiny \begin{pmatrix} 3&-1&-1&-1& 0& 0& 0& 0& 0& 0\\ -1& 4&-1& 0& 0&-1&-1& 0& 0& 0\\ -1&-1& 5&-1&-1&-1& 0& 0& 0& 0\\ -1& 0&-1& 4&-1& 0& 0& 0& 0&-1\\ 0& 0&-1&-1& 6&-1&-1&-1& 0&-1\\ 0&-1&-1& 0&-1& 4&-1& 0& 0& 0\\ 0&-1& 0& 0&-1&-1& 5&-1&-1& 0\\ 0& 0& 0& 0&-1& 0&-1& 4&-1&-1\\ 0& 0& 0& 0& 0& 0&-1&-1& 3&-1\\ 0& 0& 0&-1&-1& 0& 0&-1&-1& 4\\ \end{pmatrix} \] \end{block}} \vspace{-15pt} \uncover<6->{% \begin{block}{Satz von Kirchhoff} Die Anzahl der Spannbäume eines Netzwerkes ist ein Kofaktor des Laplaceoperators \vspace{-5pt} \[ \det L_{ij} = \left| L\text{ ohne }\left\{\begin{array}{c}\text{Zeile $i$}\\\text{Spalte $j$}\end{array}\right. \right| \] \end{block}} \vspace{-12pt} \uncover<7->{% {\usebeamercolor[fg]{title}Beispiel:} 41524 } \end{column} \end{columns} \end{frame} \egroup