diff options
author | Erik Löffler <erik.loeffler@ost.ch> | 2022-07-27 15:53:20 +0200 |
---|---|---|
committer | Erik Löffler <erik.loeffler@ost.ch> | 2022-07-27 15:53:20 +0200 |
commit | 3e57ab690350ad4ab447cdd0d263d87c414c96b5 (patch) | |
tree | 6af5d2dfc202dd1e5f3fd05562c0d09872fa50e5 | |
parent | Added intro and differential equation to (diff) | |
download | SeminarSpezielleFunktionen-3e57ab690350ad4ab447cdd0d263d87c414c96b5.tar.gz SeminarSpezielleFunktionen-3e57ab690350ad4ab447cdd0d263d87c414c96b5.zip |
Added boundary condiutions for fourier example.
Diffstat (limited to '')
-rw-r--r-- | buch/papers/sturmliouville/waermeleitung_beispiel.tex | 54 |
1 files changed, 49 insertions, 5 deletions
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 64bf974..243d0e1 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -1,10 +1,11 @@ % % waermeleitung_beispiel.tex -- Beispiel Wärmeleitung in homogenem Stab. +%%%%%%%%%%%%%%%%%%%%%%%%%%% Erster Entwurf %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\subsubsection{Wärmeleitung in einem Homogenen Stab} +\subsection{Wärmeleitung in einem Homogenen Stab} In diesem Abschnitt betrachten wir das Problem der Wärmeleitung in einem homogenen Stab und wie das Sturm-Liouville-Problem bei der Beschreibung dieses @@ -12,9 +13,52 @@ physikalischen Phänomenes auftritt. Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und Wärmeleitkoeffizient $\kappa$. Somit ergibt sich für das Wärmeleitungsproblem -die partielle Differentialgleichung - +die partielle Differentialgleichung \[ \frac{\partial u}{\partial t} = - \kappa \frac{\partial^{2}u}{{\partial x}^{2}}. -\]
\ No newline at end of file + \kappa \frac{\partial^{2}u}{{\partial x}^{2}} +\] +wobei der Stab in diesem Fall auf der X-Achse im Intervall $[0,l]$ liegt. + +Da diese Differentialgleichung das Problem allgemein für einen homogenen +Stab beschreibt, werden zusätzliche Bedingungen benötigt, um beispielsweise +die Lösung für einen Stab zu finden, bei dem die Enden auf konstanter +Tempreatur gehalten werden. + +%%%%%%%%%%%%% Randbedingungen für Stab mit konstanten Endtemperaturen %%%%%%%%% + +\subsubsection{Stab mit Enden auf konstanter Temperatur} + +Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die +Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene +Temperatur zurückgeben darf. Es folgen nun +\[ + u(t,0) + = + u(t,l) + = + 0 +\] +als Randbedingungen. + +%%%%%%%%%%%%% Randbedingungen für Stab mit isolierten Enden %%%%%%%%%%%%%%%%%%% + +\subsubsection{Stab mit isolierten Enden} + +Bei isolierten Enden des Stabes können belibige Temperaturen für $x = 0$ und +$x = l$ auftreten. In diesem Fall nicht erlaubt ist es, dass Wärme vom Stab +an die Umgebung oder von der Umgebung an den Stab abgegeben wird. + +Aus der Physik ist bekannt, dass Wärme immer von der höheren zur tieferen +Temperatur fliesst. Um Wärmefluss zu unterdrücken, muss also dafür gesorgt +werden, dass am Rand des Stabes keine Temperaturdifferenz existiert oder +indem die partielle Ableitung von $u(t,x)$ nach $x$ bei $x = 0$ und $x = l$ +verschwinden. Somit folgen +\[ + \frac{\partial}{\partial x} u(t, 0) + = + \frac{\partial}{\partial x} u(t, l) + = + 0 +\] +als Randbedingungen.
\ No newline at end of file |