aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2022-06-18 11:01:07 +0200
committerAndreas Müller <andreas.mueller@ost.ch>2022-06-18 11:01:07 +0200
commit6893688fccb63844102d8f1d728302d4eb823d68 (patch)
tree7e5a5ac6472cbee695ad9a8602c6ed1d2b401a10
parentinfo on rational functions (diff)
downloadSeminarSpezielleFunktionen-6893688fccb63844102d8f1d728302d4eb823d68.tar.gz
SeminarSpezielleFunktionen-6893688fccb63844102d8f1d728302d4eb823d68.zip
add new graphs
Diffstat (limited to '')
-rw-r--r--buch/chapters/030-geometrie/trigonometrisch.tex12
-rw-r--r--buch/chapters/040-rekursion/gamma.tex130
-rw-r--r--buch/chapters/040-rekursion/gammalimit/Makefile11
-rw-r--r--buch/chapters/040-rekursion/gammalimit/l.cpp26
-rw-r--r--buch/chapters/040-rekursion/gammalimit/l.m19
-rw-r--r--buch/chapters/040-rekursion/images/Makefile6
-rw-r--r--buch/chapters/040-rekursion/images/loggammaplot.m43
-rw-r--r--buch/chapters/040-rekursion/images/loggammaplot.pdfbin0 -> 30948 bytes
-rw-r--r--buch/chapters/040-rekursion/images/loggammaplot.tex89
9 files changed, 309 insertions, 27 deletions
diff --git a/buch/chapters/030-geometrie/trigonometrisch.tex b/buch/chapters/030-geometrie/trigonometrisch.tex
index dc1f46a..047e6cb 100644
--- a/buch/chapters/030-geometrie/trigonometrisch.tex
+++ b/buch/chapters/030-geometrie/trigonometrisch.tex
@@ -167,11 +167,11 @@ und umgekehrt:
\[
\sin\alpha
=
-\sqrt{1-\cos^2\alpha\mathstrut}
+\sqrt{1-{\cos\mathstrut\!}^2\,\alpha\mathstrut}
\qquad\text{und}\qquad
\cos\alpha
=
-\sqrt{1-\sin^2\alpha\mathstrut}
+\sqrt{1-{\sin\mathstrut\!}^2\,\alpha\mathstrut}
\]
Da sich alle Funktionen durch $\cos\alpha$ und $\sin\alpha$ ausdrücken
lassen, können alle auch nur durch eine ausgedrückt werden.
@@ -197,7 +197,7 @@ Tabelle~\ref{buch:geometrie:tab:trigo} zusammengestellt ist.
&\displaystyle\frac{\sqrt{\csc^2\alpha-1}}{\csc\alpha}
\\
\cos\alpha
- &\sqrt{1-\sin^2\alpha\mathstrut}
+ &\sqrt{1-\sin{\!}^2\,\alpha\mathstrut}
&\cos\alpha
&\displaystyle\frac{1}{\sqrt{1+\tan^2\alpha}}
&\displaystyle\frac{\cot\alpha}{\sqrt{1+\cot^2\alpha}}
@@ -205,7 +205,7 @@ Tabelle~\ref{buch:geometrie:tab:trigo} zusammengestellt ist.
&\displaystyle\frac{1}{\csc\alpha}
\\
\tan\alpha
- &\displaystyle\frac{\sin\alpha}{\sqrt{1-\sin^2\alpha\mathstrut}}
+ &\displaystyle\frac{\sin\alpha}{\sqrt{1-\sin{\!}^2\,\alpha\mathstrut}}
&\displaystyle\frac{\sqrt{1-\cos^2\alpha\mathstrut}}{\cos\alpha}
&\tan\alpha
&\displaystyle\frac{1}{\cot\alpha}
@@ -213,7 +213,7 @@ Tabelle~\ref{buch:geometrie:tab:trigo} zusammengestellt ist.
&\displaystyle\sqrt{\csc^2\alpha-1}
\\
\cot\alpha
- &\displaystyle\frac{\sqrt{1-\sin^2\alpha\mathstrut}}{\sin\alpha}
+ &\displaystyle\frac{\sqrt{1-\sin{\!}^2\,\alpha\mathstrut}}{\sin\alpha}
&\displaystyle\frac{\cos\alpha}{\sqrt{1-\cos^2\alpha\mathstrut}}
&\displaystyle\frac{1}{\tan\alpha}
&\cot\alpha
@@ -229,7 +229,7 @@ Tabelle~\ref{buch:geometrie:tab:trigo} zusammengestellt ist.
&\displaystyle\frac{\csc\alpha}{\sqrt{\csc^2\alpha-1}}
\\
\csc\alpha
- &\displaystyle\frac{1}{\sqrt{1-\sin^2\alpha\mathstrut}}
+ &\displaystyle\frac{1}{\sqrt{1-\sin{\!}^2\,\alpha\mathstrut}}
&\displaystyle\frac{1}{\cos\alpha}
&\displaystyle\sqrt{1+\tan^2\alpha}
&\displaystyle\frac{\sqrt{1+\cot^2\alpha}}{\cot\alpha}
diff --git a/buch/chapters/040-rekursion/gamma.tex b/buch/chapters/040-rekursion/gamma.tex
index 8c02752..e4dfa9a 100644
--- a/buch/chapters/040-rekursion/gamma.tex
+++ b/buch/chapters/040-rekursion/gamma.tex
@@ -203,7 +203,41 @@ x\lim_{n\to\infty}
Weil $n/(n+1)\to 1$ ist und die Funktion $z\mapsto z^{x-1}$ für alle
nach der Definition zulässigen Werte von $x$ eine stetige Funktion ist.
+%
+%
+%
\subsubsection{Numerische Unzulänglichkeiten der Grenzwertdefinition}
+\begin{table}
+\centering
+%\renewcommand{\arraystretch}{1.1}
+\begin{tabular}{|>{$}c<{$}|>{$}r<{$}|>{$}l<{$}|>{$}l<{$}|}
+\hline
+\log_{10} n& n&n!n^{x-1}/(x)_n\mathstrut & \text{Fehler%
+\vrule height12pt depth6pt width0pt} \\
+\hline
+\text{\vrule height12pt depth0pt width0pt}
+ 1& 10&1.\underline{7}947392559855804&0.0222854050800643\\
+ 2& 100&1.\underline{77}46707942830697&0.0022169433775536\\
+ 3& 1000&1.\underline{772}6754214755178&0.0002215705700017\\
+ 4& 10000&1.\underline{7724}760067171375&0.0000221558116213\\
+ 5& 100000&1.\underline{77245}60664742375&0.0000022155687214\\
+ 6& 1000000&1.\underline{77245}40724623101&0.0000002215567940\\
+ 7& 10000000&1.\underline{7724538}730613721&0.0000000221558560\\
+ 8& 100000000&1.\underline{77245385}31233258&0.0000000022178097\\
+ 9& 1000000000&1.\underline{77245385}11320680&0.0000000002265519\\
+ 10& 10000000000&1.\underline{772453850}9261316&0.0000000000206155\\
+ 11&100000000000&1.\underline{77245385}14549788&0.0000000005494627\\
+ & \infty&1.\underline{7724538509055161}&
+\text{\vrule height12pt depth6pt width0pt} \\
+\hline
+\end{tabular}
+\caption{Numerische Berechnung mit der Grenzwertdefinition
+und rekursiver Berechnung von $n!/(x)_n$ mit Hilfe der Folge
+\eqref{buch:rekursion:gamma:pnfolge}.
+Die Konvergenz ist sehr langsam, die Anzahl korrekter Stellen
+wächst logarithmisch mit $n$.
+\label{buch:rekursion:gamma:produktberechnung}}
+\end{table}
Die Grenzwertdefinition~\ref{buch:rekursion:gamma:def:definition}
ist zwar zweifellos richtig, kann aber nicht für die numerische
Berechnung der Gamma-Funktion verwendet werden.
@@ -237,6 +271,24 @@ ist.
Die Approximation mit Hilfe der Grenzwertdefinition kann also
grundsätzlich nicht mehr als zwei korrekte Nachkommastellen liefern.
+Den Quotienten $n!/(x)_n$ kann man mit Hilfe der Rekursionsformel
+\begin{equation}
+p_n = p_{n-1}\cdot \frac{n}{x+n-1},\qquad
+p_0 = 0
+\label{buch:rekursion:gamma:pnfolge}
+\end{equation}
+etwas effizienter berechnen.
+Insbesondere umgeht man damit das Problem, dass $n!$ den Wertebereich
+des \texttt{double} Datentyps sprengt.
+Der Wert der Gamma-Funktion kann dann durch $p_nn^{x-1}$ approximiert
+werden.
+Die Tabelle~\ref{buch:rekursion:gamma:produktberechnung} fasst die
+Resultate zusammen und zeigt, dass die Konvergenz logarithmisch ist:
+die Anzahl korrekter Nachkommastellen ist $\log_{10}n$.
+
+%
+% Produktformel
+%
\subsection{Produktformel}
Ein möglicher Ausweg aus den numerischen Schwierigkeiten mit der
Grenzwertdefinition ist, den schnell wachsenden Faktor $n!$
@@ -253,8 +305,10 @@ xe^{\gamma x}
\prod_{k=1}^\infty
\biggl(1+\frac{x}k\biggr)\,e^{-\frac{x}{k}},
\label{buch:rekursion:gamma:eqn:produktformel}
+\index{Gamma-Funktion!Produktformel}%
\end{equation}
wobei $\gamma$ die Euler-Mascheronische Konstante
+\index{Euler-Mascheronische Konstante}%
\[
\gamma
=
@@ -368,16 +422,20 @@ vollständig bewiesen.
\begin{table}
\centering
-\begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|}
+\begin{tabular}{|>{$}c<{$}|>{$}r<{$}|>{$}c<{$}|>{$}c<{$}|}
\hline
-k & \Gamma(\frac12,n) & \Gamma(\frac12) - \Gamma(\frac12,n) \\
+k & n & \Gamma(\frac12,n) & \Gamma(\frac12) - \Gamma(\frac12,n)%
+\text{\vrule height12pt depth6pt width0pt} \\
\hline
-1 & 1.\underline{7}518166478 & -0.0206372031 \\
-2 & 1.\underline{77}02543372 & -0.0021995137 \\
-3 & 1.\underline{772}2324556 & -0.0002213953 \\
-4 & 1.\underline{7724}316968 & -0.0000221541 \\
-5 & 1.\underline{77245}16354 & -0.0000022156 \\
-6 & 1.\underline{772453}6293 & -0.0000002216 \\
+\text{\vrule height12pt depth0pt width0pt}
+ 1& 10& 1.\underline{7}518166478& -0.0206372031 \\
+ 2& 100& 1.\underline{77}02543372& -0.0021995137 \\
+ 3& 1000& 1.\underline{772}2324556& -0.0002213953 \\
+ 4& 10000& 1.\underline{7724}316968& -0.0000221541 \\
+ 5& 100000& 1.\underline{77245}16354& -0.0000022156 \\
+ 6&1000000& 1.\underline{772453}6293& -0.0000002216 \\
+\infty& & 1.\underline{7724538509}&
+\text{\vrule height12pt depth6pt width0pt} \\
\hline
\end{tabular}
\caption{Werte $\Gamma(\frac12,n)$ von $\Gamma(\frac12)$ berechnet mit
@@ -385,6 +443,9 @@ $n=10^k$ Faktoren der
Produktformel~\eqref{buch:rekursion:gamma:eqn:produktformel}
und der zugehörige Fehler.
Die korrekten Nachkommastellen sind unterstrichen.
+Die Konvergenz ist genau gleich langsam wie in der Berechnung mit
+Hilfe der Grenzwert-Definition in
+Tabelle~\ref{buch:rekursion:gamma:produktberechnung}.
\label{buch:rekursion:gamma:gammatabelle}}
\end{table}
@@ -436,6 +497,9 @@ die richtigen Werte für natürliche Argumente hat, es wird aber auch
gezeigt, dass dies nicht ausreicht um zu schliessen, dass die
Integralformel mit der früher definierten Gamma-Funktion übereinstimmt.
+%
+% Funktionalgleichung für die Integraldefinition
+%
\subsubsection{Funktionalgleichung für die Integraldefinition}
Tatsächlich ist es einfach nachzuprüfen, dass die Funktionalgleichung
der Gamma-Funktion auch für die Definition~\ref{buch:rekursion:def:gamma}
@@ -494,6 +558,9 @@ die Werte der Fakultät annimmt.
\label{buch:rekursion:fig:gamma}}
\end{figure}
+%
+% Der Wert Gamma(1/2)
+%
\subsubsection{Der Wert $\Gamma(\frac12)$}
Die Integraldarstellung kann dazu verwendet werden, $\Gamma(\frac12)$
zu berechnen.
@@ -516,7 +583,11 @@ der Gamma-Funktion und berechnen
Der Integrand im letzten Integral ist die Wahrscheinlichkeitsdichte
einer Normalverteilung, deren Integral wohlbekannt ist.
-\subsubsection{Alternative Lösungen}
+%
+% Alternative Lösungen
+%
+\subsubsection{Alternative Lösungen der
+Funktionalgleichung~\ref{buch:rekursion:eqn:gammadef}}
Die Funktion $\Gamma(z)$ ist nicht die einzige Funktion, die natürlichen
Zahlen die Werte $\Gamma(n+1) = n!$ der Fakultät annimmt.
Indem man eine beliebige Funktion $f(z)$ addiert, die auf alle
@@ -560,6 +631,9 @@ Dann ist $ f(z) = \Gamma(z) $.
% XXX Gamma in the interval (1,2)
%Man beachte, dass
+%
+% Laplace-Transformierte der Potenzfunktion
+%
\subsubsection{Laplace-Transformierte der Potenzfunktion}
Die Integraldarstellung der Gamma-Funktion erlaubt jetzt auch, die
Laplace-Transformation der Potenzfunktion zu berechnen.
@@ -594,6 +668,9 @@ Durch die Substitution $st = u$ oder $t=\frac{u}{s}$ wird daraus
\]
\end{proof}
+%
+% Pol erster Ordnung bei z=0
+%
\subsubsection{Pol erster Ordnung bei $z=0$}
Wir haben zu prüfen, dass sowohl der Wert $\Gamma(1)$ korrekt ist als
auch die Rekursionsformel~\eqref{buch:rekursion:eqn:gammadef} gilt.
@@ -644,6 +721,9 @@ Daraus ergibt sich für $\Gamma(z)$ der Ausdruck
\]
Die Gamma-Funktion hat daher an der Stelle $z=0$ einen Pol erster Ordnung.
+%
+% Ausdehnung auf Re(z) < 0
+%
\subsubsection{Ausdehnung auf $\operatorname{Re}z<0$}
Die Integralformel konvergiert nicht für $\operatorname{Re}z\le 0$.
Durch analytische Fortsetzung, wie sie im
@@ -683,22 +763,29 @@ Somit hat $\Gamma(z)$ Pole erster Ordnung bei den negativen
ganzen Zahlen und bei $0$, wie sie in
Abbildung~\ref{buch:rekursion:fig:gamma} gezeigt werden.
+%
+% Numerische Berechnung
+%
\subsubsection{Numerische Berechnung}
\begin{table}
\centering
-\begin{tabular}{|>{$}c<{$}|>{$}c<{$}>{$}c<{$}|}
+\begin{tabular}{|>{$}c<{$}|>{$}r<{$}|>{$}c<{$}>{$}c<{$}|}
\hline
-k & y(10^k) & y(10^k) - \Gamma(\frac{5}{2}) \\
+k & n=10^k & y(n) & y(n) - \Gamma(\frac{5}{3}) 
+\text{\vrule height12pt depth6pt width0pt} \\
\hline
-1 & 0.0000000000 & -0.9027452930 \\
-2 & 0.3319129461 & -0.5708323468 \\
-3 & 0.\underline{902}5209490 & -0.0002243440 \\
-4 & 0.\underline{902745}1207 & -0.0000001723 \\
-5 & 0.\underline{902745}0962 & -0.0000001968 \\
-6 & 0.\underline{902745}0962 & -0.0000001968 \\
+\text{\vrule height12pt depth0pt width0pt}
+1 & 10 & 0.0000000000 & -0.9027452930 \\
+2 & 100 & 0.3319129461 & -0.5708323468 \\
+3 & 1000 & 0.\underline{902}5209490 & -0.0002243440 \\
+4 & 10000 & 0.\underline{902745}1207 & -0.0000001723 \\
+5 & 100000 & 0.\underline{902745}0962 & -0.0000001968 \\
+6 & 1000000 & 0.\underline{902745}0962 & -0.0000001968 \\
+ & \infty & 0.\underline{9027452929} &
+\text{\vrule height12pt depth6pt width0pt} \\
\hline
\end{tabular}
-\caption{Resultate der Berechnung von $\Gamma(\frac{5}{2})$ mit Hilfe
+\caption{Resultate der Berechnung von $\Gamma(\frac{5}{3})$ mit Hilfe
der Differentialgleichung \eqref{buch:rekursion:gamma:eqn:gammadgl}.
Die korrekten Stellen sind unterstrichen.
Es sind immerhin sechs korrekte Stellen gefunden, wobei nur 337
@@ -708,7 +795,7 @@ Auswertungen des Integranden notwendig waren.
Im Prinzip könnte die Integraldefinition der numerischen Berechnung
entgegenkommen.
Um diese Hypothese zu prüfen, berechnen wir das Integral für
-$z=\frac52$ mit Hilfe der äquivalenten Differentialgleichungen
+$z=\frac53$ mit Hilfe der äquivalenten Differentialgleichungen
\begin{equation}
\dot{y}(t) = t^{z-1}e^{-t}
\qquad\text{mit Anfangsbedingung $y(0)=0$}.
@@ -717,10 +804,13 @@ $z=\frac52$ mit Hilfe der äquivalenten Differentialgleichungen
Der gesuchte Wert ist der Grenzwert $\lim_{t\to\infty} y(t)$.
In der Tabelle~\ref{buch:rekursion:gamma:table:gammaintegral}
sind die Werte von $y(10^k)$ sowie die Differenzen
-$y(10^k) - \Gamma(\frac{5}{2})$ zusammengefasst.
+$y(10^k) - \Gamma(\frac{5}{3})$ zusammengefasst.
Die Genauigkeit erreicht sechs korrekte Nachkommastellen mit nur
337 Auswertungen des Integranden.
+Eine noch wesentlich effizientere Auswertung des $\Gamma$-Integrals
+mit Hilfe der Gauss-Laguerre-Quadratur wird in Kapitel~\ref{chapter:laguerre}
+von Patrick Müller dargestellt.
%
%
diff --git a/buch/chapters/040-rekursion/gammalimit/Makefile b/buch/chapters/040-rekursion/gammalimit/Makefile
new file mode 100644
index 0000000..0804e74
--- /dev/null
+++ b/buch/chapters/040-rekursion/gammalimit/Makefile
@@ -0,0 +1,11 @@
+#
+# Makefile -- build gamma limit test programm
+#
+# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+l: l.cpp
+ g++ -O2 -g -Wall `pkg-config --cflags gsl` `pkg-config --libs gsl` \
+ -o l l.cpp
+
+test: l
+ ./l
diff --git a/buch/chapters/040-rekursion/gammalimit/l.cpp b/buch/chapters/040-rekursion/gammalimit/l.cpp
new file mode 100644
index 0000000..7a86800
--- /dev/null
+++ b/buch/chapters/040-rekursion/gammalimit/l.cpp
@@ -0,0 +1,26 @@
+/*
+ * l.cpp
+ *
+ * (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+ */
+#include <cstdlib>
+#include <cmath>
+#include <cstdio>
+
+int main(int argc, char *argv[]) {
+ double x = 0.5;
+ double g = tgamma(x);
+ printf("limit: %20.16f\n", g);
+ double p = 1;
+ long long N = 100000000000;
+ long long n = 10;
+ for (long long k = 1; k <= N; k++) {
+ p = p * k / (x + k - 1);
+ if (0 == k % n) {
+ double gval = p * pow(k, x-1);
+ printf("%12ld %20.16f %20.16f\n", k, gval, gval - g);
+ n = n * 10;
+ }
+ }
+ return EXIT_SUCCESS;
+}
diff --git a/buch/chapters/040-rekursion/gammalimit/l.m b/buch/chapters/040-rekursion/gammalimit/l.m
new file mode 100644
index 0000000..32b6442
--- /dev/null
+++ b/buch/chapters/040-rekursion/gammalimit/l.m
@@ -0,0 +1,19 @@
+#
+# l.m -- Berechnung der Gamma-Funktion
+#
+# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+global N;
+N = 10000;
+
+function retval = gamma(x, n)
+ p = 1;
+ for k = (1:n)
+ p = p * k / (x + k - 1);
+ end
+ retval = p * n^(x-1);
+endfunction
+
+for n = (100:100:N)
+ printf("Gamma(%4d) = %10f\n", n, gamma(0.5, n));
+end
diff --git a/buch/chapters/040-rekursion/images/Makefile b/buch/chapters/040-rekursion/images/Makefile
index 86dfa1e..a1884f4 100644
--- a/buch/chapters/040-rekursion/images/Makefile
+++ b/buch/chapters/040-rekursion/images/Makefile
@@ -3,7 +3,7 @@
#
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-all: gammaplot.pdf fibonacci.pdf order.pdf beta.pdf
+all: gammaplot.pdf fibonacci.pdf order.pdf beta.pdf loggammaplot.pdf
gammaplot.pdf: gammaplot.tex gammapaths.tex
pdflatex gammaplot.tex
@@ -29,4 +29,8 @@ beta.pdf: beta.tex betapaths.tex
betapaths.tex: betadist.m
octave betadist.m
+loggammaplot.pdf: loggammaplot.tex loggammadata.tex
+ pdflatex loggammaplot.tex
+loggammadata.tex: loggammaplot.m
+ octave loggammaplot.m
diff --git a/buch/chapters/040-rekursion/images/loggammaplot.m b/buch/chapters/040-rekursion/images/loggammaplot.m
new file mode 100644
index 0000000..5456e4f
--- /dev/null
+++ b/buch/chapters/040-rekursion/images/loggammaplot.m
@@ -0,0 +1,43 @@
+#
+# loggammaplot.m
+#
+# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+xmax = 10;
+xmin = 0.1;
+N = 500;
+
+fn = fopen("loggammadata.tex", "w");
+
+fprintf(fn, "\\def\\loggammapath{\n ({%.4f*\\dx},{%.4f*\\dy})",
+ xmax, log(gamma(xmax)));
+xstep = (xmax - 1) / N;
+for x = (xmax:-xstep:1)
+ fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", x, log(gamma(x)));
+endfor
+for k = (0:0.2:10)
+ x = exp(-k);
+ fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", x, log(gamma(x)));
+endfor
+fprintf(fn, "\n}\n");
+
+function retval = lgp(fn, x0, name)
+ fprintf(fn, "\\def\\loggammaplot%s{\n", name);
+ fprintf(fn, "\\draw[color=red,line width=1pt] ");
+ for k = (-7:0.1:7)
+ x = x0 + 0.5 * tanh(k);
+ if (k > -5)
+ fprintf(fn, "\n\t-- ");
+ end
+ fprintf(fn, "({%.4f*\\dx},{%.4f*\\dy})", x, log(gamma(x)));
+ endfor
+ fprintf(fn, ";\n}\n");
+endfunction
+
+lgp(fn, -0.5, "zero");
+lgp(fn, -1.5, "one");
+lgp(fn, -2.5, "two");
+lgp(fn, -3.5, "three");
+lgp(fn, -4.5, "four");
+
+fclose(fn);
diff --git a/buch/chapters/040-rekursion/images/loggammaplot.pdf b/buch/chapters/040-rekursion/images/loggammaplot.pdf
new file mode 100644
index 0000000..8ac9eb4
--- /dev/null
+++ b/buch/chapters/040-rekursion/images/loggammaplot.pdf
Binary files differ
diff --git a/buch/chapters/040-rekursion/images/loggammaplot.tex b/buch/chapters/040-rekursion/images/loggammaplot.tex
new file mode 100644
index 0000000..c3c17ea
--- /dev/null
+++ b/buch/chapters/040-rekursion/images/loggammaplot.tex
@@ -0,0 +1,89 @@
+%
+% tikztemplate.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\input{loggammadata.tex}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+% add image content here
+
+\def\dx{1}
+\def\dy{0.6}
+\def\xmax{7.8}
+\def\xmin{-4.9}
+\def\ymax{8}
+\def\ymin{-3.1}
+
+\fill[color=blue!20] ({\xmin*\dx},{\ymin*\dy}) rectangle ({-4*\dx},{\ymax*\dy});
+\fill[color=blue!20] ({-3*\dx},{\ymin*\dy}) rectangle ({-2*\dx},{\ymax*\dy});
+\fill[color=blue!20] ({-1*\dx},{\ymin*\dy}) rectangle ({-0*\dx},{\ymax*\dy});
+
+\draw[->] ({\xmin*\dx-0.1},0) -- ({\xmax*\dx+0.3},0)
+ coordinate[label={$x$}];
+\draw[->] (0,{\ymin*\dy-0.1}) -- (0,{\ymax*\dy+0.3})
+ coordinate[label={right:$y$}];
+
+\begin{scope}
+\clip ({\xmin*\dx},{\ymin*\dy}) rectangle ({\xmax*\dx},{\ymax*\dy});
+
+\foreach \x in {-1,-2,-3,-4}{
+ \draw[color=blue,line width=0.3pt]
+ ({\x*\dx},{\ymin*\dy}) -- ({\x*\dx},{\ymax*\dy});
+}
+
+\draw[color=red,line width=1pt] \loggammapath;
+
+\loggammaplotzero
+\loggammaplotone
+\loggammaplottwo
+\loggammaplotthree
+\loggammaplotfour
+
+\end{scope}
+
+\foreach \y in {0.1,10,100,1000,1000}{
+ \draw[line width=0.3pt]
+ ({\xmin*\dx},{ln(\y)*\dy})
+ --
+ ({\xmax*\dx},{ln(\y)*\dy}) ;
+}
+
+\foreach \x in {1,...,8}{
+ \draw ({\x*\dx},{-0.05}) -- ({\x*\dx},{0.05});
+ \node at ({\x*\dx},0) [below] {$\x$};
+}
+
+\foreach \x in {-1,...,-4}{
+ \draw ({\x*\dx},{-0.05}) -- ({\x*\dx},{0.05});
+}
+\foreach \x in {-1,...,-3}{
+ \node at ({\x*\dx},0) [below right] {$\x$};
+}
+\node at ({-4*\dx},0) [below left] {$-4$};
+
+\def\htick#1#2{
+ \draw (-0.05,{ln(#1)*\dy}) -- (0.05,{ln(#1)*\dy});
+ \node at (0,{ln(#1)*\dy}) [above right] {#2};
+}
+
+\htick{10}{$10^1$}
+\htick{100}{$10^2$}
+\htick{1000}{$10^3$}
+\htick{0.1}{$10^{-1}$}
+
+\node[color=red] at ({3*\dx},{ln(30)*\dy}) {$y=\log|\Gamma(x)|$};
+
+
+\end{tikzpicture}
+\end{document}
+