diff options
author | Nao Pross <np@0hm.ch> | 2022-08-18 14:46:51 +0200 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2022-08-18 14:46:51 +0200 |
commit | 95d6d5a46854e79d7b410a1fd4253ee4548e936e (patch) | |
tree | 2c4f27a08a2b534f4d8761d8cf7e9a3e75e2af3e | |
parent | kugel: Minor changes (diff) | |
download | SeminarSpezielleFunktionen-95d6d5a46854e79d7b410a1fd4253ee4548e936e.tar.gz SeminarSpezielleFunktionen-95d6d5a46854e79d7b410a1fd4253ee4548e936e.zip |
kugel: Orthogonality
Diffstat (limited to '')
-rw-r--r-- | buch/papers/kugel/spherical-harmonics.tex | 203 |
1 files changed, 194 insertions, 9 deletions
diff --git a/buch/papers/kugel/spherical-harmonics.tex b/buch/papers/kugel/spherical-harmonics.tex index 2ded50b..2a00754 100644 --- a/buch/papers/kugel/spherical-harmonics.tex +++ b/buch/papers/kugel/spherical-harmonics.tex @@ -178,7 +178,7 @@ write the solutions The restriction that the separation constant $m$ needs to be an integer arises from the fact that we require a $2\pi$-periodicity in $\varphi$ since the coordinate systems requires that $\Phi(\varphi + 2\pi) = \Phi(\varphi)$. -Unfortunately, solving \eqref{kugel:eqn:ode-theta} is as straightforward, +Unfortunately, solving \eqref{kugel:eqn:ode-theta} is not as straightforward, actually, it is quite difficult, and the process is so involved that it will require a dedicated section of its own. @@ -250,7 +250,7 @@ case of the former that is known known as the \emph{Legendre polynomials}, since we only need a solution between $-1$ and $1$. \begin{lemma}[Legendre polynomials] - \label{kugel:lem:legendre-poly} + \label{kugel:thm:legendre-poly} The polynomial function \[ P_n(z) = \sum^{\lfloor n/2 \rfloor}_{k=0} @@ -287,7 +287,7 @@ Legendre equation, we can make use of the following lemma patch the solutions such that they also become solutions of the associated Legendre equation \eqref{kugel:eqn:associated-legendre}. -\begin{lemma} \label{kugel:lem:extend-legendre} +\begin{lemma} \label{kugel:thm:extend-legendre} If $Z_n(z)$ is a solution of the Legendre equation \eqref{kugel:eqn:legendre}, then \begin{equation*} @@ -300,7 +300,7 @@ such that they also become solutions of the associated Legendre equation See section \ref{kugel:sec:proofs:legendre}. \end{proof} -What is happening in lemma \ref{kugel:lem:extend-legendre}, is that we are +What is happening in lemma \ref{kugel:thm:extend-legendre}, is that we are essentially inserting a square root function in the solution in order to be able to reach the parts of the domain near the poles at $\pm 1$ of the associated Legendre equation, which is not possible only using power series @@ -356,9 +356,10 @@ $Y^m_n(\vartheta, \varphi)$. \label{kugel:def:spherical-harmonics} The functions \begin{equation*} - Y_{m,n}(\vartheta, \varphi) = P^m_n(\cos \vartheta) e^{im\varphi}, + Y^m_n (\vartheta, \varphi) = P^m_n(\cos \vartheta) e^{im\varphi}, \end{equation*} - where $m, n \in \mathbb{Z}$ and $|m| < n$ are called spherical harmonics. + where $m, n \in \mathbb{Z}$ and $|m| < n$ are called (unnormalized) spherical + harmonics. \end{definition} \begin{figure} @@ -366,9 +367,195 @@ $Y^m_n(\vartheta, \varphi)$. \kugelplaceholderfig{\textwidth}{.8\paperheight} \caption{ \kugeltodo{Big picture with the first few spherical harmonics.} + \label{kugel:fig:spherical-harmonics} } \end{figure} +\kugeltodo{Describe how they look like with fig. +\ref{kugel:fig:spherical-harmonics}} + +\subsection{Orthogonality of $P_n$, $P^m_n$ and $Y^m_n$} + +We shall now discuss an important property of the spherical harmonics: they form +an orthogonal system. And since the spherical harmonics contain the Ferrers or +associated Legendre functions, we need to discuss their orthogonality first. +But the Ferrers functions themselves depend on the Legendre polynomials, so that +will be our starting point. + +\begin{lemma} For the Legendre polynomials $P_n(z)$ and $P_k(z)$ it holds that + \label{kugel:thm:legendre-poly-ortho} + \begin{equation*} + \int_{-1}^1 P_n(z) P_k(z) \, dz + = \frac{2}{2n + 1} \delta_{nk} + = \begin{cases} + \frac{2}{2n + 1} & \text{if } n = k, \\ + 0 & \text{otherwise}. + \end{cases} + \end{equation*} +\end{lemma} +\begin{proof} + To start, consider the fact that that the Legendre equation + \eqref{kugel:eqn:legendre}, of which two distinct Legendre polynomials + $P_n(z)$ and $P_k(z)$ are a solution ($n \neq k$), can be rewritten in the + following form: + \begin{equation} + \frac{d}{dz} \left[ + \left( 1 - z^2 \right) \frac{dZ}{dz} + \right] + n(n+1) Z(z) = 0. + \end{equation} + So we rewrite the Legendre equations for $P_n(z)$ and $P_k(z)$: + \begin{align*} + \frac{d}{dz} \left[ + \left( 1 - z^2 \right) \frac{dP_n}{dz} + \right] + n(n+1) P_n(z) &= 0, + & + \frac{d}{dz} \left[ + \left( 1 - z^2 \right) \frac{dP_k}{dz} + \right] + k(k+1) P_k(z) &= 0, + \end{align*} + then we multiply the former by $P_k(z)$ and the latter by $P_n(z)$ and + subtract the two to get + \begin{equation*} + \frac{d}{dz} \left[ + \left( 1 - z^2 \right) \frac{dP_n}{dz} + \right] P_k(z) + n(n+1) P_n(z) P_k(z) + - + \frac{d}{dz} \left[ + \left( 1 - z^2 \right) \frac{dP_k}{dz} + \right] P_n(z) - k(k+1) P_k(z) P_n(z) = 0. + \end{equation*} + By grouping terms, making order and integrating with respect to $z$ from $-1$ + to 1 we obtain + \begin{gather} + \int_{-1}^1 \left\{ + \frac{d}{dz} \left[ + \left( 1 - z^2 \right) \frac{dP_n}{dz} + \right] P_k(z) + - + \frac{d}{dz} \left[ + \left( 1 - z^2 \right) \frac{dP_k}{dz} + \right] P_n(z) - k(k+1) P_k(z) P_n(z) + \right\} \,dz \nonumber \\ + + \left[ n(n+1) - k(k+1) \right] \int_{-1}^1 P_k(z) P_n(z) \, dz = 0. + \label{kugel:thm:legendre-poly-ortho:proof:1} + \end{gather} + Since by the product rule + \begin{equation*} + \frac{d}{dz} \left[ (1 - z^2) \frac{dP_k}{dz} P_n(z) \right] + = + \frac{d}{dz} \left[ (1 - z^2) \frac{dP_n}{dz} \right] P_k(z) + + (1 - z^2) \frac{dP_n}{dz} \frac{dP_k}{dz}, + \end{equation*} + we can simplify the first term in + \eqref{kugel:thm:legendre-poly-ortho:proof:1} to get + \begin{gather*} + \int_{-1}^1 \left\{ + \frac{d}{dz} \left[ (1 - z^2) \frac{dP_k}{dz} P_n(z) \right] + - \cancel{(1 - z^2) \frac{dP_n}{dz} \frac{dP_k}{dz}} + - \frac{d}{dz} \left[ (1 - z^2) \frac{dP_n}{dz} P_k(z) \right] + + \cancel{(1 - z^2) \frac{dP_k}{dz} \frac{dP_n}{dz}} + \right\} \, dz \\ + = \int_{-1}^1 \frac{d}{dz} \left\{ (1 - z^2) \left[ + \frac{dP_k}{dz} P_n(z) - \frac{dP_n}{dz} P_k(z) + \right] \right\} \, dz + = (1 - z^2) \left[ + \frac{dP_k}{dz} P_n(z) - \frac{dP_n}{dz} P_k(z) + \right] \Bigg|_{-1}^1, + \end{gather*} + which always equals 0 because the product contains $1 - z^2$ and the bounds + are at $\pm 1$. Thus, of \eqref{kugel:thm:legendre-poly-ortho:proof:1} only + the second term remains and the equation becomes + \begin{equation*} + \left[ n(n+1) - k(k+1) \right] \int_{-1}^1 P_k(z) P_n(z) \, dz = 0. + \end{equation*} + By dividing by the constant in front of the integral we have our first result. + Now we need to show that when $n = k$ the integral equals $2 / (2n + 1)$. + % \begin{equation*} + % \end{equation*} + \kugeltodo{Finish proof. Can we do it without the generating function of + $P_n$?} +\end{proof} + +In a similarly algebraically tedious fashion, we can also continue to check for +orthogonality for the Ferrers functions $P^m_n(z)$, since they are related to +$P_n(z)$ by a $m$-th derivative, and obtain the following result. + +\begin{lemma} For the associated Legendre functions + \label{kugel:thm:associated-legendre-ortho} + \begin{equation*} + \int_{-1}^1 P^m_n(z) P^{m'}_{n'}(z) \, dz + = \frac{2(m + n)!}{(2n + 1)(n - m)!} \delta_{nn'} + = \begin{cases} + \frac{2(m + n)!}{(2n + 1)(n - m)!} & \text{if } n = n', \\ + 0 & \text{otherwise}. + \end{cases} + \end{equation*} +\end{lemma} +\begin{proof} + \kugeltodo{Is it worth showing? IMHO no, it is mostly the same as Lemma + \ref{kugel:thm:legendre-poly-ortho} with the difference that the $m$-th + derivative is a pain to deal with.} +\end{proof} + +An interesting fact to observe in lemma +\ref{kugel:thm:associated-legendre-ortho} is that the orthogonality is only +affected in the lower index, while varying $m$ only changes the constant in +front of the Kronecker delta. By having the orthogonality relations of the +Legendre functions we can finally show that spherical harmonics are also +orthogonal. + +\begin{lemma} For the spherical harmonics + \kugeltodo{Fix horizontal spacing, inner product definition is missing.} + \label{kugel:thm:spherical-harmonics-ortho} + \begin{equation*} + \langle Y^m_n, Y^{m'}_{n'} \rangle + = \int_{-\pi}^\pi \int_0^{2\pi} + Y^m_n(\vartheta, \varphi) \overline{Y^{m'}_{n'}(\vartheta, \varphi)} + \sin \vartheta \, d\varphi \, d\vartheta + = \frac{-4\pi}{2n + 1} \frac{(m + n)!}{(n - m)!} \delta_{nn'} + = \begin{cases} + \frac{-4\pi}{2n + 1} \frac{(m + n)!}{(n - m)!} & \text{if } n = n', \\ + 0 & \text{otherwise}. + \end{cases} + \end{equation*} +\end{lemma} +\begin{proof} + We will begin by doing a bit of algebraic maipulaiton: + \begin{align*} + \int_{-\pi}^\pi \int_0^{2\pi} + Y^m_n(\vartheta, \varphi) \overline{Y^{m'}_{n'}(\vartheta, \varphi)} + \sin \vartheta \, d\varphi \, d\vartheta + &= \int_{-\pi}^\pi \int_0^{2\pi} + e^{im\varphi} P^m_n(\cos \vartheta) + e^{-im'\varphi} P^{m'}_{n'}(\cos \vartheta) + \, d\varphi \sin \vartheta \, d\vartheta + \\ + &= \int_{-\pi}^\pi + P^m_n(\cos \vartheta) P^{m'}_{n'}(\cos \vartheta) + \int_0^{2\pi} e^{i(m - m')\varphi} + \, d\varphi \sin \vartheta \, d\vartheta + . + \end{align*} + First, notice that the associated Legendre polynomials are assumed to be real, + and are thus unaffected by the complex conjugation. Then, we can see that when + $m = m'$ the inner integral simplifies to $\int_0^{2\pi} 1 \, d\varphi$ which + equals $2\pi$, so in this case the expression becomes + \begin{equation*} + 2\pi \int_{-\pi}^\pi + P^m_n(\cos \vartheta) P^{m'}_{n'}(\cos \vartheta) + \sin \vartheta \, d\vartheta + = -2\pi \int_{-1}^1 P^m_n(z) P^{m'}_{n'}(z) \, dz + = \frac{-4\pi(m + n)!}{(2n + 1)(n - m)!} \delta_{nn'}, + \end{equation*} + where in the second step we performed the substitution $z = \cos\vartheta$; + $d\vartheta = \frac{d\vartheta}{dz} dz= - dz / \sin \vartheta$, and then we + used lemma \ref{kugel:thm:associated-legendre-ortho}. Now we just need look at + the case when $m \neq m'$. Fortunately this is easy: the inner integral is + $\int_0^{2\pi} e^{i(m - m')\varphi} d\varphi$, or in other words we are + integrating a complex exponetial over the entire period, which always results + in zero. Thus, we do not need to do anything and the proof is complete. +\end{proof} + \subsection{Normalization} \kugeltodo{Discuss various normalizations.} @@ -403,8 +590,6 @@ Ora, visto che la soluzione dell'eigenfunction problem รจ formata dalla moltipli \section{Series Expansions in $C(S^2)$} -\subsection{Orthogonality of $P_n$, $P^m_n$ and $Y^m_n$} - -\subsection{Series Expansion} +\subsection{Spherical Harmonics Series} \subsection{Fourier on $S^2$} |