aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorhaddoucher <reda.haddouche@ost.ch>2022-08-16 14:40:26 +0200
committerhaddoucher <reda.haddouche@ost.ch>2022-08-16 14:40:26 +0200
commitaee1436743696f2152ba9ca9a08a941c87200987 (patch)
treebd050ea2f8d5407008c26b2fde91eac7c195d588
parentremoved file. (diff)
parentMerged tschebyscheff section. (diff)
downloadSeminarSpezielleFunktionen-aee1436743696f2152ba9ca9a08a941c87200987.tar.gz
SeminarSpezielleFunktionen-aee1436743696f2152ba9ca9a08a941c87200987.zip
Merge remote-tracking branch 'origin/sturmliouville/erik-branch' into sturmliouville/redabranch
Diffstat (limited to '')
-rw-r--r--buch/papers/sturmliouville/tschebyscheff_beispiel.tex71
1 files changed, 71 insertions, 0 deletions
diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex
new file mode 100644
index 0000000..a18684f
--- /dev/null
+++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex
@@ -0,0 +1,71 @@
+%
+% tschebyscheff_beispiel.tex
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+
+\subsection{Tschebyscheff-Polynome\label{sub:tschebyscheff-polynome}}
+Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfunktionen die man braucht schon aufgeliste, und zwar mit
+\begin{align*}
+ w(x) &= \frac{1}{\sqrt{1-x^2}} \\
+ p(x) &= \sqrt{1-x^2} \\
+ q(x) &= 0
+\end{align*}.
+Da die Sturm-Liouville-Gleichung
+\begin{equation}
+ \label{eq:sturm-liouville-equation-tscheby}
+ \frac{d}{dx}\lbrack \sqrt{1-x^2} \frac{dy}{dx} \rbrack + \lbrack 0 + \lambda \frac{1}{\sqrt{1-x^2}} \rbrack y = 0
+\end{equation}
+nun mit den Koeffizientenfunktionen aufgestellt werden kann, bleibt die Frage, ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt.
+Für das reguläre Problem laut der Definition \ref{def:reguläres_sturm-liouville-problem} muss die funktion $p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und $w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein - und sie sind es auch.
+Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art mit Hilfe von Hyperbelfunktionen
+\begin{equation}
+ T_n(x) = \cos n (\arccos x)
+\end{equation}.
+Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus:
+\begin{equation}
+ T_n(x) = \left\{\begin{array}{ll} \cosh (n \arccos x), & x > 1\\
+ (-1)^n \cosh (n \arccos (-x)), & x<-1 \end{array}\right.
+\end{equation},
+jedoch ist die Orthogonalität nur auf dem Intervall $[ -1, 1]$ sichergestellt.
+Die nächste Bedingung beinhaltet, dass die Funktion $p(x)^{-1}$ und $w(x)>0$ sein müssen.
+Die Funktion
+\begin{equation*}
+ p(x)^{-1} = \frac{1}{\sqrt{1-x^2}}
+\end{equation*}
+ist die gleiche wie $w(x)$.
+
+Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$.
+Da sich die Polynome nur auf dem Intervall $[ -1,1 ]$ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt.
+Beim einsetzen in die Randbedingung \ref{eq:randbedingungen}, erhält man
+\begin{equation}
+\begin{aligned}
+ k_a y(-1) + h_a y'(-1) &= 0
+ k_b y(-1) + h_b y'(-1) &= 0
+\end{aligned}
+\end{equation}.
+Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \label{sub:definiton_der_tschebyscheff-Polynome}).
+Es gibt zwei Arten von Tschebyscheff Polynome: die erste Art $T_n(x)$ und die zweite Art $U_n(x)$.
+Jedoch beachtet man in diesem Kapitel nur die Tschebyscheff Polynome erster Art (\ref{eq:tschebyscheff-polynome}).
+Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die Verifizierung der Randbedingung wählt man $n=2$.
+Somit erhält man
+\begin{equation}
+ \begin{aligned}
+ k_a T_2(-1) + h_a T_{2}'(-1) &= k_a = 0\\
+ k_b T_2(1) + h_b T_{2}'(1) &= k_b = 0
+\end{aligned}
+\end{equation}.
+Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden.
+Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind.
+
+
+
+
+
+
+
+
+
+
+
+