diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2022-05-01 08:44:42 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-05-01 08:44:42 +0200 |
commit | c0e25074194ed78103a5d43b27dd278126999c78 (patch) | |
tree | 41af8703a70d0f0a0cbd03c2f2194f12a5a6a075 | |
parent | fix typos (diff) | |
parent | minor fix (diff) | |
download | SeminarSpezielleFunktionen-c0e25074194ed78103a5d43b27dd278126999c78.tar.gz SeminarSpezielleFunktionen-c0e25074194ed78103a5d43b27dd278126999c78.zip |
Merge pull request #7 from Runterer/master
Erste Arbeiten an Zeta Funktion
Diffstat (limited to '')
-rw-r--r-- | buch/papers/zeta/Makefile.inc | 7 | ||||
-rw-r--r-- | buch/papers/zeta/analytic_continuation.tex | 264 | ||||
-rw-r--r-- | buch/papers/zeta/einleitung.tex | 11 | ||||
-rw-r--r-- | buch/papers/zeta/main.tex | 32 | ||||
-rw-r--r-- | buch/papers/zeta/teil0.tex | 22 | ||||
-rw-r--r-- | buch/papers/zeta/teil1.tex | 55 | ||||
-rw-r--r-- | buch/papers/zeta/teil2.tex | 40 | ||||
-rw-r--r-- | buch/papers/zeta/teil3.tex | 40 | ||||
-rw-r--r-- | buch/papers/zeta/zeta_gamma.tex | 53 |
9 files changed, 338 insertions, 186 deletions
diff --git a/buch/papers/zeta/Makefile.inc b/buch/papers/zeta/Makefile.inc index 11c7697..14babe2 100644 --- a/buch/papers/zeta/Makefile.inc +++ b/buch/papers/zeta/Makefile.inc @@ -7,8 +7,7 @@ dependencies-zeta = \ papers/zeta/packages.tex \ papers/zeta/main.tex \ papers/zeta/references.bib \ - papers/zeta/teil0.tex \ - papers/zeta/teil1.tex \ - papers/zeta/teil2.tex \ - papers/zeta/teil3.tex + papers/zeta/einleitung.tex \ + papers/zeta/analytic_continuation.tex \ + papers/zeta/zeta_gamma.tex \ diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex new file mode 100644 index 0000000..bb95b92 --- /dev/null +++ b/buch/papers/zeta/analytic_continuation.tex @@ -0,0 +1,264 @@ +\section{Analytische Fortsetzung} \label{zeta:section:analytische_fortsetzung} +\rhead{Analytische Fortsetzung} + +%TODO missing Text + +\subsection{Fortsetzung auf $\Re(s) > 0$} \label{zeta:subsection:auf_bereich_ge_0} +Zuerst definieren die Dirichletsche Etafunktion als +\begin{equation}\label{zeta:equation:eta} + \eta(s) + = + \sum_{n=1}^{\infty} + \frac{(-1)^{n-1}}{n^s}, +\end{equation} +wobei die Reihe bis auf die alternierenden Vorzeichen die selbe wie in der Zetafunktion ist. +Diese Etafunktion konvergiert gemäss dem Leibnitz-Kriterium im Bereich $\Re(s) > 0$, da dann die einzelnen Glieder monoton fallend sind. + +Wenn wir es nun schaffen, die sehr ähnliche Zetafunktion mit der Etafunktion auszudrücken, dann haben die gesuchte Fortsetzung. +Die folgenden Schritte zeigen, wie man dazu kommt: +\begin{align} + \zeta(s) + &= + \sum_{n=1}^{\infty} + \frac{1}{n^s} \label{zeta:align1} + \\ + \frac{1}{2^{s-1}} + \zeta(s) + &= + \sum_{n=1}^{\infty} + \frac{2}{(2n)^s} \label{zeta:align2} + \\ + \left(1 - \frac{1}{2^{s-1}} \right) + \zeta(s) + &= + \frac{1}{1^s} + \underbrace{-\frac{2}{2^s} + \frac{1}{2^s}}_{-\frac{1}{2^s}} + + \frac{1}{3^s} + \underbrace{-\frac{2}{4^s} + \frac{1}{4^s}}_{-\frac{1}{4^s}} + \ldots + && \text{\eqref{zeta:align1}} - \text{\eqref{zeta:align2}} + \\ + &= \eta(s) + \\ + \zeta(s) + &= + \left(1 - \frac{1}{2^{s-1}} \right)^{-1} \eta(s). +\end{align} + +\subsection{Fortsetzung auf ganz $\mathbb{C}$} \label{zeta:subsection:auf_ganz} +Für die Fortsetzung auf den Rest von $\mathbb{C}$, verwenden wir den Zusammenhang von Gamma- und Zetafunktion aus \ref{zeta:section:zusammenhang_mit_gammafunktion}. +Wir beginnen damit, die Gammafunktion für den halben Funktionswert zu berechnen als +\begin{equation} + \Gamma \left( \frac{s}{2} \right) + = + \int_0^{\infty} t^{\frac{s}{2}-1} e^{-t} dt. +\end{equation} +Nun substituieren wir $t$ mit $t = \pi n^2 x$ und $dt=\pi n^2 dx$ und erhalten +\begin{align} + \Gamma \left( \frac{s}{2} \right) + &= + \int_0^{\infty} + (\pi n^2)^{\frac{s}{2}} + x^{\frac{s}{2}-1} + e^{-\pi n^2 x} + dx + && \text{Division durch } (\pi n^2)^{\frac{s}{2}} + \\ + \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}} n^s} + &= + \int_0^{\infty} + x^{\frac{s}{2}-1} + e^{-\pi n^2 x} + dx + && \text{Zeta durch Summenbildung } \sum_{n=1}^{\infty} + \\ + \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} + \zeta(s) + &= + \int_0^{\infty} + x^{\frac{s}{2}-1} + \sum_{n=1}^{\infty} + e^{-\pi n^2 x} + dx. \label{zeta:equation:integral1} +\end{align} +Die Summe kürzen wir ab als $\psi(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$. +%TODO Wieso folgendes -> aus Fourier Signal +Es gilt +\begin{equation}\label{zeta:equation:psi} + \psi(x) + = + - \frac{1}{2} + + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}} + + \frac{1}{2 \sqrt{x}}. +\end{equation} + +Zunächst teilen wir nun das Integral aus \eqref{zeta:equation:integral1} auf als +\begin{equation}\label{zeta:equation:integral2} + \int_0^{\infty} + x^{\frac{s}{2}-1} + \psi(x) + dx + = + \int_0^{1} + x^{\frac{s}{2}-1} + \psi(x) + dx + + + \int_1^{\infty} + x^{\frac{s}{2}-1} + \psi(x) + dx, +\end{equation} +wobei wir uns nun auf den ersten Teil konzentrieren werden. +Dabei setzen wir das Wissen aus \eqref{zeta:equation:psi} ein und erhalten +\begin{align} + \int_0^{1} + x^{\frac{s}{2}-1} + \psi(x) + dx + &= + \int_0^{1} + x^{\frac{s}{2}-1} + \left( + - \frac{1}{2} + + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}} + + \frac{1}{2 \sqrt{x}}. + \right) + dx + \\ + &= + \int_0^{1} + x^{\frac{s}{2}-\frac{3}{2}} + \psi \left( \frac{1}{x} \right) + + \frac{1}{2} + \left( + x^{\frac{s}{2}-\frac{3}{2}} + - + x^{\frac{s}{2}-1} + \right) + dx + \\ + &= + \int_0^{1} + x^{\frac{s}{2}-\frac{3}{2}} + \psi \left( \frac{1}{x} \right) + dx + + \frac{1}{2} + \int_0^1 + x^{\frac{s}{2}-\frac{3}{2}} + - + x^{\frac{s}{2}-1} + dx. \label{zeta:equation:integral3} +\end{align} +Dabei kann das zweite Integral gelöst werden als +\begin{equation} + \frac{1}{2} + \int_0^1 + x^{\frac{s}{2}-\frac{3}{2}} + - + x^{\frac{s}{2}-1} + dx + = + \frac{1}{s(s-1)}. +\end{equation} +Das erste Integral aus \eqref{zeta:equation:integral3} mit $\psi \left(\frac{1}{x} \right)$ ist nicht lösbar in dieser Form. +Deshalb substituieren wir $x = \frac{1}{u}$ und $dx = -\frac{1}{u^2}du$. +Die untere Integralgrenze wechselt ebenfalls zu $x_0 = 0 \rightarrow u_0 = \infty$. +Dies ergibt +\begin{align} + \int_{\infty}^{1} + {\frac{1}{u}}^{\frac{s}{2}-\frac{3}{2}} + \psi(u) + \frac{-du}{u^2} + &= + \int_{1}^{\infty} + {\frac{1}{u}}^{\frac{s}{2}-\frac{3}{2}} + \psi(u) + \frac{du}{u^2} + \\ + &= + \int_{1}^{\infty} + x^{(-1) \left(\frac{s}{2}+\frac{1}{2}\right)} + \psi(x) + dx, +\end{align} +wobei wir durch Multiplikation mit $(-1)$ die Integralgrenzen tauschen dürfen. +Es ist zu beachten das diese Grenzen nun identisch mit den Grenzen des zweiten Integrals von \eqref{zeta:equation:integral2} sind. +Wir setzen beide Lösungen ein in Gleichung \eqref{zeta:equation:integral3} und erhalten +\begin{equation} + \int_0^{1} + x^{\frac{s}{2}-1} + \psi(x) + dx + = + \int_{1}^{\infty} + x^{(-1) \left(\frac{s}{2}+\frac{1}{2}\right)} + \psi(x) + dx + + + \frac{1}{s(s-1)}. +\end{equation} +Dieses Resultat setzen wir wiederum ein in \eqref{zeta:equation:integral2}, um schlussendlich +\begin{align} + \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} + \zeta(s) + &= + \int_0^{1} + x^{\frac{s}{2}-1} + \psi(x) + dx + + + \int_1^{\infty} + x^{\frac{s}{2}-1} + \psi(x) + dx + \nonumber + \\ + &= + \frac{1}{s(s-1)} + + + \int_{1}^{\infty} + x^{(-1) \left(\frac{s}{2}+\frac{1}{2}\right)} + \psi(x) + dx + + + \int_1^{\infty} + x^{\frac{s}{2}-1} + \psi(x) + dx + \\ + &= + \frac{1}{s(s-1)} + + + \int_{1}^{\infty} + \left( + x^{-\frac{s}{2}-\frac{1}{2}} + + + x^{\frac{s}{2}-1} + \right) + \psi(x) + dx + \\ + &= + \frac{-1}{s(1-s)} + + + \int_{1}^{\infty} + \left( + x^{\frac{1-s}{2}} + + + x^{\frac{s}{2}} + \right) + \frac{\psi(x)}{x} + dx, +\end{align} +zu erhalten. +Wenn wir dieses Resultat genau anschauen, erkennen wir dass sich nichts verändert wenn $s$ mit $1-s$ ersetzt wird. +Somit haben wir die analytische Fortsetzung gefunden als +\begin{equation}\label{zeta:equation:functional} + \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} + \zeta(s) + = + \frac{\Gamma \left( \frac{1-s}{2} \right)}{\pi^{\frac{1-s}{2}}} + \zeta(1-s). +\end{equation} + diff --git a/buch/papers/zeta/einleitung.tex b/buch/papers/zeta/einleitung.tex new file mode 100644 index 0000000..3b70531 --- /dev/null +++ b/buch/papers/zeta/einleitung.tex @@ -0,0 +1,11 @@ +\section{Einleitung} \label{zeta:section:einleitung} +\rhead{Einleitung} + +Die Riemannsche Zetafunktion ist für alle komplexe $s$ mit $\Re(s) > 1$ definiert als +\begin{equation}\label{zeta:equation1} + \zeta(s) + = + \sum_{n=1}^{\infty} + \frac{1}{n^s}. +\end{equation} + diff --git a/buch/papers/zeta/main.tex b/buch/papers/zeta/main.tex index 1d9e059..e0ea8e1 100644 --- a/buch/papers/zeta/main.tex +++ b/buch/papers/zeta/main.tex @@ -3,34 +3,16 @@ % % (c) 2020 Hochschule Rapperswil % -\chapter{Thema\label{chapter:zeta}} -\lhead{Thema} +\chapter{Riemannsche Zetafunktion\label{chapter:zeta}} +\lhead{Riemannsche Zetafunktion} \begin{refsection} -\chapterauthor{Hans Muster} +\chapterauthor{Raphael Unterer} -Ein paar Hinweise für die korrekte Formatierung des Textes -\begin{itemize} -\item -Absätze werden gebildet, indem man eine Leerzeile einfügt. -Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet. -\item -Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende -Optionen werden gelöscht. -Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen. -\item -Beginnen Sie jeden Satz auf einer neuen Zeile. -Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen -in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt -anzuwenden. -\item -Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren -Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern. -\end{itemize} +%TODO Einleitung -\input{papers/zeta/teil0.tex} -\input{papers/zeta/teil1.tex} -\input{papers/zeta/teil2.tex} -\input{papers/zeta/teil3.tex} +\input{papers/zeta/einleitung.tex} +\input{papers/zeta/zeta_gamma.tex} +\input{papers/zeta/analytic_continuation.tex} \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/zeta/teil0.tex b/buch/papers/zeta/teil0.tex deleted file mode 100644 index 56c0b1b..0000000 --- a/buch/papers/zeta/teil0.tex +++ /dev/null @@ -1,22 +0,0 @@ -% -% einleitung.tex -- Beispiel-File für die Einleitung -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 0\label{zeta:section:teil0}} -\rhead{Teil 0} -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{zeta:bibtex}. -At vero eos et accusam et justo duo dolores et ea rebum. -Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -dolor sit amet. - -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua. -At vero eos et accusam et justo duo dolores et ea rebum. Stet clita -kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit -amet. - - diff --git a/buch/papers/zeta/teil1.tex b/buch/papers/zeta/teil1.tex deleted file mode 100644 index 4017ee8..0000000 --- a/buch/papers/zeta/teil1.tex +++ /dev/null @@ -1,55 +0,0 @@ -% -% teil1.tex -- Beispiel-File für das Paper -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 1 -\label{zeta:section:teil1}} -\rhead{Problemstellung} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. -Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit -aut fugit, sed quia consequuntur magni dolores eos qui ratione -voluptatem sequi nesciunt -\begin{equation} -\int_a^b x^2\, dx -= -\left[ \frac13 x^3 \right]_a^b -= -\frac{b^3-a^3}3. -\label{zeta:equation1} -\end{equation} -Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, -consectetur, adipisci velit, sed quia non numquam eius modi tempora -incidunt ut labore et dolore magnam aliquam quaerat voluptatem. - -Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis -suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? -Quis autem vel eum iure reprehenderit qui in ea voluptate velit -esse quam nihil molestiae consequatur, vel illum qui dolorem eum -fugiat quo voluptas nulla pariatur? - -\subsection{De finibus bonorum et malorum -\label{zeta:subsection:finibus}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. - -Et harum quidem rerum facilis est et expedita distinctio -\ref{zeta:section:loesung}. -Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -impedit quo minus id quod maxime placeat facere possimus, omnis -voluptas assumenda est, omnis dolor repellendus -\ref{zeta:section:folgerung}. -Temporibus autem quibusdam et aut officiis debitis aut rerum -necessitatibus saepe eveniet ut et voluptates repudiandae sint et -molestiae non recusandae. -Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -voluptatibus maiores alias consequatur aut perferendis doloribus -asperiores repellat. - - diff --git a/buch/papers/zeta/teil2.tex b/buch/papers/zeta/teil2.tex deleted file mode 100644 index 9e8a96e..0000000 --- a/buch/papers/zeta/teil2.tex +++ /dev/null @@ -1,40 +0,0 @@ -% -% teil2.tex -- Beispiel-File für teil2 -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 2 -\label{zeta:section:teil2}} -\rhead{Teil 2} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{zeta:subsection:bonorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. - - diff --git a/buch/papers/zeta/teil3.tex b/buch/papers/zeta/teil3.tex deleted file mode 100644 index 6610cc3..0000000 --- a/buch/papers/zeta/teil3.tex +++ /dev/null @@ -1,40 +0,0 @@ -% -% teil3.tex -- Beispiel-File für Teil 3 -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 3 -\label{zeta:section:teil3}} -\rhead{Teil 3} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{zeta:subsection:malorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. - - diff --git a/buch/papers/zeta/zeta_gamma.tex b/buch/papers/zeta/zeta_gamma.tex new file mode 100644 index 0000000..59c8744 --- /dev/null +++ b/buch/papers/zeta/zeta_gamma.tex @@ -0,0 +1,53 @@ +\section{Zusammenhang mit Gammafunktion} \label{zeta:section:zusammenhang_mit_gammafunktion} +\rhead{Zusammenhang mit Gammafunktion} + +Dieser Abschnitt stellt die Verbindung zwischen der Gamma- und der Zetafunktion her. + +%TODO ref Gamma +Wenn in der Gammafunkion die Integrationsvariable $t$ substituieren mit $t = nu$ und $dt = n du$, dann können wir die Gleichung umstellen und erhalten den Zusammenhang mit der Zetafunktion +\begin{align} + \Gamma(s) + &= + \int_0^{\infty} t^{s-1} e^{-t} dt + \\ + &= + \int_0^{\infty} n^{s\cancel{-1}}u^{s-1} e^{-nu} \cancel{n}du + && + \text{Division durch }n^s + \\ + \frac{\Gamma(s)}{n^s} + &= + \int_0^{\infty} u^{s-1} e^{-nu}du + && + \text{Zeta durch Summenbildung } \sum_{n=1}^{\infty} + \\ + \Gamma(s) \zeta(s) + &= + \int_0^{\infty} u^{s-1} + \sum_{n=1}^{\infty}e^{-nu} + du. + \label{zeta:equation:zeta_gamma1} +\end{align} +Die Summe über $e^{-nu}$ können wir als geometrische Reihe schreiben und erhalten +\begin{align} + \sum_{n=1}^{\infty}e^{-u^n} + &= + \sum_{n=0}^{\infty}e^{-u^n} + - + 1 + \\ + &= + \frac{1}{1 - e^{-u}} - 1 + \\ + &= + \frac{1}{e^u - 1}. +\end{align} +Wenn wir dieses Resultat einsetzen in \eqref{zeta:equation:zeta_gamma1} und durch $\Gamma(s)$ teilen, erhalten wir +\begin{equation}\label{zeta:equation:zeta_gamma_final} + \zeta(s) + = + \frac{1}{\Gamma(s)} + \int_0^{\infty} + \frac{u^{s-1}}{e^u -1} + du. +\end{equation} |