diff options
author | LordMcFungus <mceagle117@gmail.com> | 2022-07-22 21:28:45 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-07-22 21:28:45 +0200 |
commit | 23f17598c1742c70f442b94044a20aa821022c5a (patch) | |
tree | a945540ee6a4e86b37df2f01e3a91584b4797c4f /buch/chapters/000-einleitung | |
parent | Merge pull request #2 from AndreasFMueller/master (diff) | |
parent | Merge pull request #25 from JODBaer/master (diff) | |
download | SeminarSpezielleFunktionen-23f17598c1742c70f442b94044a20aa821022c5a.tar.gz SeminarSpezielleFunktionen-23f17598c1742c70f442b94044a20aa821022c5a.zip |
Merge pull request #3 from AndreasFMueller/master
update
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/000-einleitung/Makefile.inc | 7 | ||||
-rw-r--r-- | buch/chapters/000-einleitung/chapter.tex | 108 | ||||
-rw-r--r-- | buch/chapters/000-einleitung/funktionsbegriff.tex | 74 | ||||
-rw-r--r-- | buch/chapters/000-einleitung/inhalt.tex | 153 | ||||
-rw-r--r-- | buch/chapters/000-einleitung/speziellefunktionen.tex | 150 |
5 files changed, 385 insertions, 107 deletions
diff --git a/buch/chapters/000-einleitung/Makefile.inc b/buch/chapters/000-einleitung/Makefile.inc index a870448..2c4e046 100644 --- a/buch/chapters/000-einleitung/Makefile.inc +++ b/buch/chapters/000-einleitung/Makefile.inc @@ -4,5 +4,8 @@ # (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # -CHAPTERFILES = $(CHAPTERFILES) \ - chapters/000-einleitung/chapter.tex +CHAPTERFILES += \ + chapters/000-einleitung/chapter.tex \ + chapters/000-einleitung/funktionsbegriff.tex \ + chapters/000-einleitung/speziellefunktionen.tex \ + chapters/000-einleitung/inhalt.tex diff --git a/buch/chapters/000-einleitung/chapter.tex b/buch/chapters/000-einleitung/chapter.tex index 559a468..e53eafb 100644 --- a/buch/chapters/000-einleitung/chapter.tex +++ b/buch/chapters/000-einleitung/chapter.tex @@ -7,110 +7,8 @@ \lhead{Einleitung} \rhead{} \addcontentsline{toc}{chapter}{Einleitung} -Eine Polynomgleichung wie etwa -\begin{equation} -p(x) = ax^2+bx+c = 0 -\label{buch:einleitung:quadratisch} -\end{equation} -kann manchmal dadurch gelöst werden, dass man die Nullstellen errät -und damit eine Faktorisierung $p(x)=a(x-x_1)(x-x_2)$ konstruiert. -Doch im Allgemeinen wird man die Lösungsformel für quadratische -Gleichungen verwenden, die auf quadratischem Ergänzen basiert. -Es erlaubt die Gleichung~\eqref{buch:einleitung:quadratisch} umzwandeln in -\[ -\biggl(x + \frac{b}{2a}\biggr)^2 -= --\frac{c}{a} + \frac{b^2}{4a^2} -= -\frac{b^2-4ac}{4a^2}. -\] -Um diese Gleichung nach $x$ aufzulösen, muss man die inverse Funktion -der Quadratfunktion zur Verfügung haben, die Wurzelfunktion. -Dies ist wohl das älteste Beispiel einer speziellen Funktion, -die man zu dem Zweck eingeführt hat, spezielle algebraische Gleichungen -lösen zu können. -Sie liefert die bekannte Lösungsformel -\[ -x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} -\] -für die quadratische Gleichung. - -Durch die Definition der Wurzelfunktion ist das Problem der numerischen -Berechnung der Nullstelle natürlich noch nicht gelöst, aber man hat -ein handliches mathematisches Symbol gewonnen, mit dem man die Lösungen -übersichtlich beschreiben und algebraisch manipulieren kann. -Diese Idee steht hinter allen weiteren in diesem Buch diskutierten -Funktionen: wann immer ein wichtiges mathematisches Konzept sich nicht -direkt durch die bereits entwickelten Funktionen ausdrücken lässt, -erfindet man dafür eine neue Funktion oder Familie von Funktionen. -Beispielsweise hat sich die Darstellung von Zahlen $x$ als Potenzen -einer gemeinsamen Basis, zum Beispiel $x=10^y$, als sehr nützlich -herausgestellt, um Multiplikationen auf die von Hand leichter -ausführbaren Additionen zurückzuführen. -Man braucht also die Fähigkeit, die Abhängigkeit des Exponenten $y$ -von $x$ auszudrücken, mit anderen Worten, man braucht die Logarithmusfunktion. - -Spezielle Funktionen wie die Wurzelfunktion und die Logarithmusfunktion -werden also zu Bausteinen, die in der Lösung algebraischer oder auch -analytischer Probleme verwendet werden können. -Die Erfahrung zeigt, dass diese Funktionen immer wieder nützlich -sind, es lohnt sich also, ihre Berechnung zum Beispiel in einer -Bibliothek zu implementieren. -Spezielle Funktionen sind in diesem Sinn eine mathematische Form -des informatischen Prinzips des ``code reuse''. - -Die trigonometrischen Funktionen kann man als Lösungen des geometrischen -Problems der Parametrisierung eines Kreises verstehen. -Alternativ kann man $\sin x$ und $\cos x$ als spezielle Lösungen der -Differentialgleichung $y''=-y$ verstehen. -Viele andere Funktionen wie die hyperbolischen Funktionen oder die -Bessel-Funktionen sind ebenfalls Lösungen spezieller Differentialgleichungen. -Auch die Theorie der partiellen Differentialgleichungen gibt Anlass -zu interessanten Lösungsfunktionen. -Die Separation des Poisson-Problems in Kugelkoordinaten führt zum Beispiel -auf die Kugelfunktionen, mit denen sich beliebige Funktionen auf einer -Kugeloberfläche analysieren und synthetisieren lassen. - -Die Lösungen einer linearer gewöhnlicher Differentialgleichung können -oft mit Hilfe von Potenzreihen dargestellt werden. -So kann man zum Beispiel die Potenzreihenentwicklung der Exponentialfunktion -und der trigonometrischen Funktionen finden. -Die Konvergenz einer Potenzreihe wird aber durch Singularitäten -eingeschränkt. -Komplexe Potenzreihen ermöglichen aber, solche Stellen zu ``umgehen''. -Die Theorie der komplex differenzierbaren Funktionen bildet einen -allgemeinen Rahmen, mit solchen Funktionen umzugehen und ist zum -Beispiel nötig, um die Bessel-Funktionen der zweiten Art zu konstruieren, -die ebenfalls Lösungen ger Bessel-Gleichung sind, aber bei $x=0$ -eine Singularität aufweisen. - -Die Stammfunktion $F(x)$ einer gegebenen Funktion $f(x)$ ist natürlich -auch die Lösung der besonders einfachen Differentialgleichung $F'=f$. -Ein bekanntes Beispiel ist die Stammfunktion der Wahrscheinlichkeitsdichte -\[ -\varphi(x) -= -\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\] -der Normalverteilung, für die aber keine geschlossene Darstellung -mit bekannten Funktionen bekannt ist. -Sie kann aber durch die Fehlerfunktion -\[ -\operatorname{erf}(x) -= -\frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2}\,dt -\] -dargestellt werden. -Mit dem Risch-Algorithmus kann man nachweisen, dass es tatsächlich -keine Möglichkeit gibt, die Stammfunktion in geschlossener Form durch -die bereits bekannten Funktionen darzustellen, die Definition einer -neuen speziellen Funktion ist also der einzige Ausweg. -Die Fehlerfunktion ist heute in der Standardbibliothek enthalten auf -gleicher Stufe wie Wurzeln, trigonometrische Funktionen, -Exponentialfunktionen oder Logarithmen. - -Die nachstehenden Kapitel sollen die vielfältigen Arten illustrieren, -wie diese Prinzipien zu neuen und nützlichen speziellen Funktionen -und ihren Anwendungen führen können. +\input{chapters/000-einleitung/funktionsbegriff.tex} +\input{chapters/000-einleitung/speziellefunktionen.tex} +\input{chapters/000-einleitung/inhalt.tex} diff --git a/buch/chapters/000-einleitung/funktionsbegriff.tex b/buch/chapters/000-einleitung/funktionsbegriff.tex new file mode 100644 index 0000000..e684f82 --- /dev/null +++ b/buch/chapters/000-einleitung/funktionsbegriff.tex @@ -0,0 +1,74 @@ +% +% Der Funktionsbegriff +% +\subsection*{Der mathematische Funktionsbegriff} +Der moderne mathematische Funktionsbegriff ist die Krönungn einer +langen Entwicklung. +Erste Ansätze sind in der Darstellung voneinander abhängiger Grössen +in einem Koordinatensystem durch Nikolaus von Oresme im 14.~Jahrhundert +zu erkennen. +Dieser Ansatz, Funktionen einfach nur als Kurven zu betrachten, +war bis ins 17.~Jahrhundert verbreitet. +Der Begriff {\em Funktion} selbst geht wahrscheinlich auf Leibniz +zurück. + +Euler verwendete den Begriff oft austauschbar für zwei im Prinzip +verschiedene Vorstellungen. +Einerseits sah er jeden ``analytischen Ausdruck'' in einer Variablen +$x$ als eine Funktion an, andererseits betrachtete er eine in einem +Koordinatensystem freihändig gezeichnete Kurve als eine Funktion. +Heute unterscheiden wir zwischen der Funktion, also der Zuordnung +von $x$ zu den Funktionswerten $f(x)$ und dem Graphen, also der +von Paaren $(x,f(x))$ gebildeten Kurve in einem Koordinatensystem. +Nach letzterer Vorstellung ist auch die Wurzelfunktion, +die Umkehrfunktion der Quadratfunktion, $f(x)=x^2$ eine Funktion. +Da zu jedem Argument zwei verschiedene Werte $\pm\sqrt{x}$ +für die Wurzel möglich sind, lässt sich diese ``Funktion'' nicht +durch einen ``analytischen Ausdruck'' beschrieben. +Euler beschrieb diese Situation als {\em mehrdeutige Funktion}. + +Was ``analytische Ausdrücke'' alles umfassen sollen, ist ebenfalls +nicht scharf definiert. +Dahinter verbergen sich viele versteckte Annahmen, zum Beispiel +dass Funktionen automatisch stetig und möglicherweise sogar +differenzierbar sind. +Für Lagrange waren nur Funktionen akzeptabel, die durch Potenzreihen +definiert waren, solche Funktionen nennen wir heute {\em analytisch}. +Die Wahl von Potenzreihen zur Definition von Funktion ist einerseits +willkürlich, warum nicht Linearkombinationen von trigonometrischen +Funktionen? +Andererseits gibt es beliebig oft differenzierbare Funktionen, +deren Potenzreihe nicht gegen die Funktion konvergiert. + +Im 19.~Jahrhundert erfuhr die Analysis eine Reformierung. +Ausgehend vom nun präzis gefassten Grenzwertbegriff wurden Stetigkeit +und Differenzierbarkeit als eigenständige Eigenschaften von +Funktionen erkannt. +Eine Funktion war jetzt nur noch eine eindeutige Zuordnung +$x\mapsto f(x)$. +Stetigkeit ist die Eigenschaft, dass der Grenzwert in einem +Punkt des Definitionsbereichs existiert und mit dem Funktionswert +in diesem Punkt übereinstimmt. +Später wurden auch Differenzierbarkeit und Integrierbarkeit als +Eigenschaften von Funktionen erkannt, die vorhanden sein können, +aber nicht müssen. + +Der nun präzis gefasste Funktionsbegriff ist nur selten direkt anwendbar. +In der Physik treten Funktionen als Lösungen von Differentialgleichungen +auf. +Sie sind also immer mindestens differenzierbar, haben aber typischerweise +noch viele weitere Eigenschaften. +So sind zum Beispiel die Lösungen der Differentialgleichung +$y''=-n^2 y$ auf dem Intervall $[-\pi,\pi]$ die Funktionen +$\sin(nx)$ und $\cos(nx)$ für $n\in\mathbb{N}$. +Wie Fourier herausgefunden hat, lässt sich jede stetige $2\pi$-periodische +Funktion als Linearkombination dieser Funktionen approximieren. + +Eine Familie von Differentialgleichungen, die durch wenige Parameter +charakterisiert ist, führt auch zu einer Familie von Lösungsfunktionen, die +sich durch die gleichen Parameter beschreiben lassen. +Sie ist unmittelbar nützlich, da sie jedes Anwendungsproblem löst, +welches durch diese Differentialgleichung modelliert werden kann. +In diesem Sinne ist eine solche spezielle Funktionenfamilie interessanter +als eine beliebige differenzierbare Funktion. + diff --git a/buch/chapters/000-einleitung/inhalt.tex b/buch/chapters/000-einleitung/inhalt.tex new file mode 100644 index 0000000..1b9f35b --- /dev/null +++ b/buch/chapters/000-einleitung/inhalt.tex @@ -0,0 +1,153 @@ +% +% Was ist zu erwarten +% +\subsection*{Was ist zu erwarten?} +Spezielle Funktionen wie die eben angedeuteten werden also zu +Bausteinen, die in der Lösung algebraischer oder auch analytischer +Probleme verwendet werden können. +Die Erfahrung zeigt, dass diese Funktionen immer wieder nützlich +sind, es lohnt sich also, ihre Berechnung zum Beispiel in einer +Bibliothek zu implementieren. +Spezielle Funktionen sind in diesem Sinn eine mathematische Form +des informatischen Prinzips des ``code reuse''. + +Die nachstehenden Kapitel sollen die vielfältigen Arten illustrieren, +wie diese Prinzipien zu neuen und nützlichen speziellen Funktionen +und ihren Anwendungen führen können. +Hier eine kurze Übersicht über ihren Inhalt. +\begin{enumerate} +\item +Potenzen und Wurzeln: Potenzen und Polynome sind die einfachsten +Funktionen, die sich unmittelbar aus den arithmetischen Operationen +konstruieren lassen. +Die zugehörigen Umkehrfunktionen sind die Wurzelfunktionen, +sie lösen gewisse algebraische Gleichungen. +Aus den Polynomen lassen sich weiter rationale Funktionen und +Potenzreihen konstruieren, die als wichtige Werkzeuge zur Konstruktion +spezieller Funktionen in späteren Kapiteln sind. +\item +Exponentialfunktion und Exponentialgleichungen. +Die Exponentialfunktion entsteht aus dem Zinsproblem durch Grenzwert, +die Jost Bürgi zur Berechnung seiner Logarithmentabelle verwendet hat. +Hier zeigt sich die Nützlichkeit spezieller Funktionen als Grundlage +für die numerische Rechnung: Logarithmentafeln waren über Jahrhunderte +das zentrale Werkzeug für die Durchführung numerischer Rechnung. +Besonders nützlich ist aber auch die Potenzreihendarstellung der +Exponentialdarstellung, die meist für die numerische Berechnung +verwendet wird. +Die Lambert-$W$-schliesslich löst gewisse Exponentialgleichungen. +\item +Spezielle Funktionen aus der Geometrie. +Dieses Kapitel startet mit der langen Geschichte der trigonometrischen +Funktionen, den wahrscheinlich wichtigsten speziellen Funktionen für +geometrische Anwendungen. +Es führt aber auch die Kegelschnitte, die hyperbolischen Funktionen +und andere Parametrisierungen der Kegelschnitte ein, die später +wichtig werden. +Es beginnt auch die Diskussion einiger geometrischer Fragestellungen +die sich oft nur durch Definition neuer spezieller Funktionen lösen +lassen, wie zum Beispiel das Problem der Kurvenlänge auf einer +Ellipse. +\item +Spezielle Funktionen und Rekursion. +Viele Probleme lassen eine Lösung in rekursiver Form zu. +Zum Beispiel lässt sich die Fakultät durch eine Rekursionsbeziehung +vollständig definieren. +Dieses Kapitel zeigt, wie sich die Fakultät zur Gamma-Funktion +$\Gamma(x)$ erweitern lässt, die für beliebige reelle $x$ +definiert ist. +Sie ist aber nur die Spitze eines Eisbergs von weiteren wichtigen +Funktionen. +Die Beta-Integrale sind ebenfalls durch Rekursionsbeziehungen +charakterisiert, lassen sich durch Gamma-Funktionen ausdrücken und +haben als Anwendung die Verteilungsfunktionen der Ordnungsstatistiken. +Lineare Differenzengleichungen sind Rekursionsgleichungen, die sich +besonders leicht mit Potenzfunktionen lösen lassen. +Alle diese Funktionen sind Speziallfälle einer sehr viel grösseren +Klasse von Funktionen, den hypergeometrischen Funktionen, die sich +durch eine Rekursionsbeziehung der Koeffizienten ihrer +Potenzreihenentwicklung auszeichnen. +Es wird sich in nächsten Kapitel zeigen, dass sie besonders gut +geeignet sind, Lösungen von linearen Differentialgleichungen zu +beschreiben. +\item +Differentialgleichungen. +Lösungsfunktionen von Differentialgleichungen sind meistens die +erste Anwendung, in der man die klassschen speziellen Funktionen +kennenlernt. +Sie entstehen mit Hilfe der Potenzreihenmethode und können daher +als hypergeometrische Funktionen geschrieben werden. +Sie sind aber von derart grosser Bedeutung für die Anwendung, +dass viele dieser Funktionen als eigenständige Funktionenfamilien +definiert worden sind. +Die Bessel-Funktionen werden in diesem Zusammenhang eingehend +behandelt. +\item +Integrale können als Lösungen sehr spezieller Differentialgleichungen +betrachtet werden. +Eine Stammfunktion $F(x)$ der Funktion $f(x)$ hat als Ableitung die +ursprüngliche Funktion: $F'(x)=f(x)$. +Während Ableiten ein einfacher, algebraischer Prozess ist, +scheint das Finden einer Stammfunktion sehr viel anspruchsvoller +zu sein. +Spezielle Funktionen sinnvoll sein, wenn eine Stammfunktion sich nicht +mit den bereits definierten Funktionen ausdrücken lässt. +Es gibt eine systematische Methode zu entscheiden, ob eine Stammfunktion +sich durch ``elementare Funktionen'' ausdrücken lässt, sie wird oft +der Risch-Algorithmus genannt. +\item +Orthogonalität. +Mit dem Integral lassen sich auch für Funktionen Skalarprodukte +definieren. +Orthogonalität zwischen Funktionen zeichnet dann Funktionen aus, die +sich besonders gut zur Darstellung beliebiger stetiger oder +integrierbarer Funktionen eignen. +Die Fourier-Theorie und ihre vielen Varianten sind ein Resultat. +Besonders einfache orthogonale Funktionenfamilien sind die orthogonalen +Polynome, die ausserdem zu ausserordentlich genauen numerischen +Integrationsverfahren führen. +\item +Integraltransformationen. +Die trigonometrischen Funktionen sind die Grundlage der Fourier-Theorie. +Doch auch andere spezielle Funktionenfamilien können ähnlich +nützliche Integraltransformationen hergeben. +Die Bessel-Funktionen stellen sich in diesem Zusammenhang als die +Polarkoordinaten-Variante der Fourier-Theorie in der Ebene heraus. +\item +Funktionentheorie. +Einige Eigenschaften der Lösungen gewöhnlicher Differentialgleichung +sind allein mit der reellen Analysis nicht zu bewältigen. +In der Welt der speziellen Funktionen hat man aber strengere +Anforderungen an Funktionen, sie lassen sich immer als Funktionen +einer komplexen Variablen verstehen. +Dieses Kapitel stellt die wichtigsten Eigenschaften komplex +differenzierbarer Funktionen zusammen und wendet sie zum Beispiel +auf das Problem an, weitere Lösungen der Bessel-Differentialgleichung +zu finden. +\item +Partielle Differentialgleichungen sind eine der wichtigsten Quellen +der gewöhnlichen Differentialgleichungen, die nur mit speziellen +Funktionen gelöst werden können. +So führen rotationssymmetrische Wellenprobleme in der Ebene +ganz natürlich auf die Besselsche Differentialgleichung und damit +auf die Bessel-Funktionen als Lösungsfunktionen. +\item +Elliptische Funktionen. +Einige der in Kapitel~\ref{buch:chapter:geometrie} angesprochenen +Fragestellungen wie der Berechnung der Bogenlänge auf einer Ellipse +lassen sich mit keiner der bisher vorgestellten Technik lösen. +In diesem Kapitel werden die elliptischen Integrale und die +zugehörigen Umkehrfunktionen vorgestellt. +Die Jacobischen elliptischen Funktionen verallgemeinern +die trigonometrischen Funktionen und können gewisse nichtlineare +Differentialgleichungen lösen. +Sie finden auch Anwendungen im Design elliptischer Filter +(siehe Kapitel~\ref{chapter:ellfilter}). +\end{enumerate} + +Natürlich ist damit das weite Gebiet der speziellen Funktionen +nur ganz grob umrissen. +Weitere Aspekte und Anwendungen werden in den Artikeln im zweiten +Teil vorgestellt. +Eine Übersicht dazu findet der Leser auf Seite~\pageref{buch:uebersicht}. + diff --git a/buch/chapters/000-einleitung/speziellefunktionen.tex b/buch/chapters/000-einleitung/speziellefunktionen.tex new file mode 100644 index 0000000..8ca71bc --- /dev/null +++ b/buch/chapters/000-einleitung/speziellefunktionen.tex @@ -0,0 +1,150 @@ +% +% Spezielle Funktionen +% +\subsection*{Spezielle Funktionen} +Der abstrakte Funktionsbegriff auferlegt einer Funktion nur ganz wenige +Einschränkungen. +Damit lässt sich zwar eine mathematische Theorie entwickeln, die +klärt, unter welchen Umständen zusätzliche Eigenschaften wie Stetigkeit +und Differenzierbarkeit zu erwarten sind. +Allgemeine Berechnungen kann man mit diesem Begriff aber nicht durchführen, +seine Anwendbarkeit ist beschränkt. +Praktisch nützlich wird der Funktionsbegriff also erst, wenn man ihn +einschränkt auf anwendungsrelevante Eigenschaften. +Die Mathematik hat in ihrer Geschichte genau dies immer wieder +getan, wie im Folgenden kurz skizziert werden soll. + +% +% Polynome und Wurzeln +% +\subsubsection{Polynome und Wurzeln} +Eine Polynomgleichung wie etwa +\begin{equation} +p(x) = ax^2+bx+c = 0 +\label{buch:einleitung:quadratisch} +\end{equation} +kann manchmal dadurch gelöst werden, dass man die Nullstellen errät +und damit eine Faktorisierung $p(x)=a(x-x_1)(x-x_2)$ konstruiert. +Doch im Allgemeinen wird man die Lösungsformel für quadratische +Gleichungen verwenden, die auf quadratischem Ergänzen basiert. +Es erlaubt die Gleichung~\eqref{buch:einleitung:quadratisch} umzwandeln in +\[ +\biggl(x + \frac{b}{2a}\biggr)^2 += +-\frac{c}{a} + \frac{b^2}{4a^2} += +\frac{b^2-4ac}{4a^2}. +\] +Um diese Gleichung nach $x$ aufzulösen, muss man die inverse Funktion +der Quadratfunktion zur Verfügung haben, die Wurzelfunktion. +Dies ist wohl das älteste Beispiel einer speziellen Funktion, +die man zu dem Zweck eingeführt hat, spezielle algebraische Gleichungen +lösen zu können. +Sie liefert die bekannte Lösungsformel +\[ +x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} +\] +für die quadratische Gleichung. + +% +% Exponential- und Logarithmusfunktion +% +\subsubsection{Exponential- und Logarithmusfunktion} +Durch die Definition der Wurzelfunktion ist das Problem der numerischen +Berechnung der Nullstelle natürlich noch nicht gelöst, aber man hat +ein handliches mathematisches Symbol gewonnen, mit dem man die Lösungen +übersichtlich beschreiben und algebraisch manipulieren kann. +Diese Idee steht hinter allen weiteren in diesem Buch diskutierten +Funktionen: wann immer ein wichtiges mathematisches Konzept sich nicht +direkt durch die bereits entwickelten Funktionen ausdrücken lässt, +erfindet man dafür eine neue Funktion oder Familie von Funktionen. +Beispielsweise hat sich die Darstellung von Zahlen $x$ als Potenzen +einer gemeinsamen Basis, zum Beispiel $x=10^y$, als sehr nützlich +herausgestellt, um Multiplikationen auf die von Hand leichter +ausführbaren Additionen zurückzuführen. +Man braucht also die Fähigkeit, die Abhängigkeit des Exponenten $y$ +von $x$ auszudrücken, mit anderen Worten, man braucht die +Logarithmusfunktion. + +Auch die Logarithmusfunktion erlaubt nicht, die Gleichungen $xe^x=y$ +nach $x$ aufzulösen. +Solche Exponentialgleichungen treten in verschiedenster Form auch in +Anwendungen auf. +Die Lambert-$W$-Funktion, die in Abschnitt~\ref{buch:section:lambertw} +eingeführt wird, löst genau diese Aufgabe. + + +% +% Geometrisch definierte spezielle Funktionen +% +\subsubsection{Geometrisch definierte spezielle Funktionen} +Die trigonometrischen Funktionen entstanden bereits im Altertum +um das Problem der Vermessung der Himmelskugel zu lösen. +Man kann sie aber auch zur Parametrisierung eines Kreises oder +zur Beschreibung von Drehungen mit Drehmatrizen verwenden. +Sie stellen auch eine Zusammenhang zwischen der Bogenlänge +entlang eines Kreises und der zugehörigen Sehne her. +Diese Ideen lassen sich auf eine grössere Klasse von Kurven, +nämlich die Kegelschnitte verallgemeinern. +Diese werden in Kapitel~\ref{buch:chapter:geometrie} eingeführt. +Die Parametrisierungen der Hyperbeln zum Beispiel führt auf +hyperbolische Funktion und macht eine Verbindung zu Exponential- +und Logarithmusfunktion sichtbar. + +% +% Lösungen von Differentialgleichungen +% +\subsubsection{Lösungen von Differentialgleichungen} +Alternativ kann man $\sin x$ und $\cos x$ als spezielle Lösungen der +Differentialgleichung $y''=-y$ verstehen. +Viele andere Funktionen wie die hyperbolischen Funktionen oder die +Bessel-Funktionen sind ebenfalls Lösungen spezieller Differentialgleichungen. + +Auch die Theorie der partiellen Differentialgleichungen, auf die +im Kapitel~\ref{buch:chapter:pde} eingegangen wird, gibt Anlass +zu interessanten Lösungsfunktionen. +Die Separation des Poisson-Problems in Kugelkoordinaten führt zum Beispiel +auf die Kugelfunktionen, mit denen sich beliebige Funktionen auf einer +Kugeloberfläche analysieren und synthetisieren lassen. +Die Lösungen einer linearer gewöhnlicher Differentialgleichung können +oft mit Hilfe von Potenzreihen dargestellt werden. +So kann man zum Beispiel die Potenzreihenentwicklung der Exponentialfunktion +und der trigonometrischen Funktionen finden. +Die Konvergenz einer Potenzreihe wird aber durch Singularitäten +eingeschränkt. +Komplexe Potenzreihen ermöglichen aber, solche Stellen zu ``umgehen''. +Die Theorie der komplex differenzierbaren Funktionen bildet einen +allgemeinen Rahmen, mit solchen Funktionen umzugehen und ist zum +Beispiel nötig, um die Bessel-Funktionen der zweiten Art zu konstruieren, +die ebenfalls Lösungen ger Bessel-Gleichung sind, aber bei $x=0$ +eine Singularität aufweisen. + +% +% Stammfunktionen +% +\subsubsection{Stammfunktionen} +Die Stammfunktion $F(x)$ einer gegebenen Funktion $f(x)$ ist natürlich +auch die Lösung der besonders einfachen Differentialgleichung $F'=f$. +Ein bekanntes Beispiel ist die Stammfunktion der Wahrscheinlichkeitsdichte +\[ +\varphi(x) += +\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, +\] +der Normalverteilung, für die aber keine geschlossene Darstellung +mit bekannten Funktionen bekannt ist. +Sie kann aber durch die Fehlerfunktion +\[ +\operatorname{erf}(x) += +\frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2}\,dt +\] +dargestellt werden. +Mit dem Risch-Algorithmus kann man nachweisen, dass es tatsächlich +keine Möglichkeit gibt, die Stammfunktion in geschlossener Form durch +die bereits bekannten Funktionen darzustellen, die Definition einer +neuen speziellen Funktion ist also der einzige Ausweg. +Die Fehlerfunktion ist heute in der Standardbibliothek enthalten auf +gleicher Stufe wie Wurzeln, trigonometrische Funktionen, +Exponentialfunktionen oder Logarithmen. + |