diff options
author | enezerdem <105669082+enezerdem@users.noreply.github.com> | 2022-06-07 15:13:30 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-06-07 15:13:30 +0200 |
commit | 5d18eabd6477d0d4d2ace3ebe1ba2a1b8b21b0de (patch) | |
tree | 8d5e0a1adf3881ff1e9730df405264f8b15a15f4 /buch/chapters/010-potenzen | |
parent | Merge pull request #8 from AndreasFMueller/master (diff) | |
parent | index entries added (diff) | |
download | SeminarSpezielleFunktionen-5d18eabd6477d0d4d2ace3ebe1ba2a1b8b21b0de.tar.gz SeminarSpezielleFunktionen-5d18eabd6477d0d4d2ace3ebe1ba2a1b8b21b0de.zip |
Merge pull request #9 from AndreasFMueller/master
synch
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/010-potenzen/polynome.tex | 239 |
1 files changed, 224 insertions, 15 deletions
diff --git a/buch/chapters/010-potenzen/polynome.tex b/buch/chapters/010-potenzen/polynome.tex index 5f119e5..981e444 100644 --- a/buch/chapters/010-potenzen/polynome.tex +++ b/buch/chapters/010-potenzen/polynome.tex @@ -13,20 +13,30 @@ Operationen konstruieren lassen, sind die Polynome. \index{Polynom}% Ein {\em Polynome} vom Grad $n$ ist die Funktion \[ -p(x) = a_nx^2n + a_{n-1}x^{n-1} + \dots + a_2x^2 + a_1x + a_0, +p(x) = a_nx^n + a_{n-1}x^{n-1} + \dots + a_2x^2 + a_1x + a_0, \] wobei $a_n\ne 0$ sein muss. Das Polynom heisst {\em normiert}, wenn $a_n=1$ ist. \index{normiert}% +\index{Grad eines Polynoms}% Die Menge aller Polynome mit Koeffizienten in der Menge $K$ wird mit $K[x]$ bezeichnet. \end{definition} Die Menge $K[x]$ ist heisst auch der {\em Polynomring}, weil $K[x]$ -mit der Addition, Subtraktion und Multiplikation von Polynomen ein -Ring mit $1$ ist. -Im Folgenden werden wir uns auf die Fälle $K=\mathbb{R}$ und $K=\mathbb{C}$ -beschränken. +mit der Addition, Subtraktion und Multiplikation von Polynomen eine +algebraische Struktur bildet, die man einen Ring mit $1$ nennt. +\index{Ring}% +Im Folgenden werden wir uns auf die Fälle $K=\mathbb{Q}$, $K=\mathbb{R}$ +und $K=\mathbb{C}$ beschränken. + +Für den Grad eines Polynoms gelten die bekannten Rechenregeln +\begin{align*} +\deg (a(x) + b(x)) &\le \operatorname{max}(\deg a(x), \deg b(x)) +\\ +\deg (a(x)\cdot b(x)) &=\deg a(x) + \deg b(x) +\end{align*} +für beliebige Polynome $a(x),b(x)\in K[x]$. In Abschnitt~\ref{buch:orthogonalitaet:section:orthogonale-funktionen} werden Familien von Polynomen konstruiert werden, die sich durch eine @@ -35,12 +45,14 @@ Diese Polynome lassen sich typischerweise auch als Lösungen von Differentialgleichungen finden. Ausserdem werden hypergeometrische Funktionen \[ -\mathstrut_pF_q\biggl(\begin{matrix}a_1,\dots,a_p\\b_1,\dots,b_q\end{matrix};z\biggr), +\mathstrut_pF_q\biggl( +\begin{matrix}a_1,\dots,a_p\\b_1,\dots,b_q\end{matrix};z +\biggr), \] die in Abschnitt~\ref{buch:rekursion:section:hypergeometrische-funktion} definiert werden, zu Polynomen, wenn mindestens einer der Parameter $a_k$ negativ ganzzahlig ist. -Polynome sind also bereits eine Vielfältige Quelle von speziellen +Polynome sind also bereits eine vielfältige Quelle von speziellen Funktionen. Viele spezielle Funktionen werden aber komplizierter sein und @@ -53,6 +65,7 @@ Dank des folgenden Satzes kann dies immer mit Polynomen geschehen. \begin{satz}[Weierstrass] \label{buch:potenzen:satz:weierstrass} +\index{Weierstrass, Satz von}% Eine auf einem kompakten Intervall $[a,b]$ stetige Funktion $f(x)$ lässt sich durch eine Folge $p_n(x)$ von Polynomen gleichmässig approximieren. @@ -69,6 +82,189 @@ ebenfalls als Approximationen dienen können. Weitere Möglichkeiten liefern Interpolationsmethoden der numerischen Mathematik. +\subsection{Polynomdivision, Teilbarkeit und grösster gemeinsamer Teiler} +Der schriftliche Divisionsalgorithmus für Zahlen funktioniert +auch für die Division von Polynomen. +Zu zwei beliebigen Polynomen $p(x)$ und $q(x)$ lassen sich also +immer zwei Polynome $a(x)$ und $r(x)$ finden derart, dass +$p(x) = a(x) q(x) + r(x)$. +Das Polynom $a(x)$ heisst der {\em Quotient}, $r(x)$ der {\em Rest} +der Division. +Das Polynom $p(x)$ heisst {\em teilbar} durch $q(x)$, geschrieben +$q(x)\mid p(x)$, wenn $r(x)=0$ ist. + +\subsubsection{Grösster gemeinsamer Teiler} +Mit dem Begriff der Teilbarkeit geht auch die Idee des grössten +gemeinsamen Teilers einher. +Ein gemeinsamer Teiler zweier Polynome $a(x)$ und $b(x)$ +ist ein Polynom $g(x)$, welches beide Polynome teilt, also +$g(x)\mid a(x)$ und $g(x)\mid b(x)$. +\index{grösster gemeinsamer Teiler}% +Ein Polynome $g(x)$ heisst grösster gemeinsamer Teiler von $a(x)$ +und $b(x)$, wenn jeder andere gemeinsame Teiler $f(x)$ von $a(x)$ +und $b(x)$ auch ein Teiler von $g(x)$ ist. +Man beachte, dass die skalaren Vielfachen eines grössten gemeinsamen +Teilers ebenfalls grösste gemeinsame Teiler sind, der grösste gemeinsame +Teiler ist also nicht eindeutig bestimmt. + +\subsubsection{Der euklidische Algorithmus} +Zur Berechnung eines grössten gemeinsamen Teilers steht wie bei den +ganzen Zahlen der euklidische Algorithmus zur Verfügung. +Dazu bildet man die Folgen von Polynomen +\[ +\begin{aligned} +a_0(x)&=a(x) & b_0(x) &= b(x) +& +&\Rightarrow& +a_0(x)&=b_0(x) q_0(x) + r_0(x) && +\\ +a_1(x)&=b_0(x) & b_1(x) &= r_0(x) +& +&\Rightarrow& +a_1(x)&=b_1(x) q_1(x) + r_1(x) && +\\ +a_2(x)&=b_1(x) & b_2(x) &= r_1(x) +& +&\Rightarrow& +a_2(x)&=b_2(x) q_2(x) + r_2(x) && +\\ +&&&&&\hspace*{2mm}\vdots&& +\\ +a_{m-1}(x)&=b_{m-2}(x) & b_{m-1}(x) &= r_{m-2}(x) +& +&\Rightarrow& +a_{m-1}(x)&=b_{m-1}(x)q_{m-1}(x) + r_{m-1}(x) &\text{mit }r_{m-1}(x)&\ne 0 +\\ +a_m(x)&=b_{m-1}(x) & b_m(x)&=r_{m-1}(x) +& +&\Rightarrow& +a_m(x)&=b_m(x)q_m(x).&& +\end{aligned} +\] +Der Index $m$ ist der Index, bei dem zum ersten Mal $r_m(x)=0$ ist. +Dann ist $g(x)=r_{m-1}(x)$ ein grösster gemeinsamer Teiler. + +\subsubsection{Der erweiterte euklidische Algorithmus} +Die Konstruktion der Folgen $a_n(x)$ und $b_n(x)$ kann in Matrixform +kompakter geschrieben werden als +\[ +\begin{pmatrix} +a_k(x)\\ +b_k(x) +\end{pmatrix} += +\begin{pmatrix} +b_{k-1}(x)\\ +r_{k-1}(x) +\end{pmatrix} += +\begin{pmatrix} +0 & 1\\ +1 & -q_{k-1}(x) +\end{pmatrix} +\begin{pmatrix} +a_{k-1}(x)\\ +b_{k-1}(x) +\end{pmatrix}. +\] +Kürzen wir die $2\times 2$-Matrix als +\[ +Q_k(x) = \begin{pmatrix} 0&1\\1&-q_k(x)\end{pmatrix} +\] +ab, dann ergibt das Produkt der Matrizen $Q_0(x)$ bis $Q_{m}(x)$ +\[ +\begin{pmatrix} +g(x)\\ +0 +\end{pmatrix} += +\begin{pmatrix} +r_{m-1}(x)\\ +r_{m}(x) +\end{pmatrix} += +Q_{m}(x) +Q_{m-1}(x) +\cdots +Q_1(x) +Q_0(x) +\begin{pmatrix} +a(x)\\ +b(x) +\end{pmatrix}. +\] +Zur Berechnung des Produktes der Matrizen $Q_k(x)$ kann man rekursiv +vorgehen mit der Rekursionsformel +\[ +S_{k}(x) = Q_{k}(x) S_{k-1}(x) +\qquad\text{mit}\qquad +S_{-1}(x) += +\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. +\] +Ausgeschrieben bedeutet dies Matrixrekursionsformel +\[ +S_{k-1}(x) += +\begin{pmatrix} +c_{k-1} & d_{k-1} \\ +c_k & d_k +\end{pmatrix} +\qquad\Rightarrow\qquad +Q_{k}(x) S_{k-1}(x) += +\begin{pmatrix} +0&1\\1&-q_k(x) +\end{pmatrix} +\begin{pmatrix} +c_{k-1} & d_{k-1} \\ +c_k & d_k +\end{pmatrix} += +\begin{pmatrix} +c_k&d_k\\ +c_{k+1}&d_{k+1} +\end{pmatrix}. +\] +Daraus lässt sich für die Matrixelemente die Rekursionsformel +\[ +\begin{aligned} +c_{k+1} &= c_{k-1} - q_k(x) c_k(x) \\ +d_{k+1} &= d_{k-1} - q_k(x) d_k(x) +\end{aligned} +\quad +\bigg\} +\qquad +\text{mit Startwerten} +\qquad +\bigg\{ +\begin{aligned} +\quad +c_{-1} &= 1, & c_0 &= 0 \\ +d_{-1} &= 0, & d_0 &= 1. +\end{aligned} +\] +Wendet man die Matrix $S_m(x)$ auf den Vektor mit den Komponenten +$a(x)$ und $b(x)$, erhält man die Beziehungen +\[ +g(x) = c_{k-1}(x) a(x) + d_{k-1}(x) b(x) +\qquad\text{und}\qquad +0 = c_k(x) a(x) + d_k(x) b(x). +\] +Dieser Algorithmus heisst der erweiterte euklidische Algorithmus. +Wir fassen die Resultate zusammen im folgenden Satz. + +\begin{satz} +Zu zwei Polynomen $a(x),b(x) \in K[x]$ gibt es Polynome +$g(x),c(x),d(x)\in K[x]$ +derart, dass $g(x)$ ein grösster gemeinsamer Teiler von $a(x)$ und $b(x)$ +ist, und ausserdem +\[ +g(x) = c(x)a(x)+d(x)b(x) +\] +gilt. +\end{satz} + \subsection{Faktorisierung und Nullstellen} % wird später gebraucht um bei der Definition der hypergeometrischen Reihe % die Zaehler- und Nenner-Polynome als Pochhammer-Symbole zu entwickeln @@ -77,11 +273,24 @@ numerischen Mathematik. % Wird gebraucht für die Potenzreihen-Methode % Muss später ausgedehnt werden auf Potenzreihen -\subsection{Polynom-Berechnung} -Die naive Berechnung der Werte eines Polynoms beginnt mit der Berechnung -der Potenzen. -Die Anzahl nötiger Multiplikationen kann minimiert werden, indem man -das Polynom als +\subsection{Berechnung von Polynom-Werten} +Die naive Berechnung der Werte eines Polynoms $p(x)$ vom Grad $n$ +beginnt mit der Berechnung der Potenzen von $x$. +Da alle Potenzen benötigt werden, wird man dazu $n-1$ Multiplikationen +benötigen. +Die Potenzen müssen anschliessend mit den Koeffizienten multipliziert +werden, dazu sind weitere $n$ Multiplikationen nötig. +Der Wert des Polynoms kann also erhalten werden mit $2n-1$ Multiplikationen +und $n$ Additionen. + +Die Anzahl nötiger Multiplikationen kann mit dem folgenden Vorgehen +reduziert werden, welches auch als das {\em Horner-Schema} bekannt ist. +\index{Horner-Schema}% +Statt erst am Schluss alle Terme zu addieren, addiert man so früh +wie möglich. +Zum Beispiel multipliziert man $(a_nx+a_{n-1})$ mit $x$, was auf +die Multiplikationen beider Terme mit $x$ hinausläuft. +Mit dieser Idee kann man das Polynom als \[ a_nx^n + @@ -95,10 +304,10 @@ a_0 = ((\dots((a_nx+a_{n-1})x+a_{n-2})x+\dots )x+a_1)x+a_0 \] -schreibt. +schreiben. Beginnend bei der innersten Klammer sind genau $n$ Multiplikationen -und $n+1$ Additionen nötig, im Gegensatz zu $2n$ Multiplikationen -und $n$ Additionen bei der naiven Vorgehensweise. +und $n$ Additionen nötig, man spart mit diesem Vorgehen also +$n-1$ Multiplikationen. |