diff options
author | Runterer <37069007+Runterer@users.noreply.github.com> | 2022-08-06 11:00:54 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-08-06 11:00:54 +0200 |
commit | 72f13d47f42a7005889532fd29bcfc870f4e5051 (patch) | |
tree | 559c39cde661ea56759051c9b7965fb28468cfb6 /buch/chapters/030-geometrie/trigo | |
parent | minor presentation improvements (diff) | |
parent | Merge pull request #42 from daHugen/master (diff) | |
download | SeminarSpezielleFunktionen-72f13d47f42a7005889532fd29bcfc870f4e5051.tar.gz SeminarSpezielleFunktionen-72f13d47f42a7005889532fd29bcfc870f4e5051.zip |
Merge branch 'AndreasFMueller:master' into master
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/030-geometrie/trigonometrisch.tex | 13 |
1 files changed, 7 insertions, 6 deletions
diff --git a/buch/chapters/030-geometrie/trigonometrisch.tex b/buch/chapters/030-geometrie/trigonometrisch.tex index dc1f46a..643c8f2 100644 --- a/buch/chapters/030-geometrie/trigonometrisch.tex +++ b/buch/chapters/030-geometrie/trigonometrisch.tex @@ -167,11 +167,11 @@ und umgekehrt: \[ \sin\alpha = -\sqrt{1-\cos^2\alpha\mathstrut} +\sqrt{1-{\cos\mathstrut\!}^2\,\alpha\mathstrut} \qquad\text{und}\qquad \cos\alpha = -\sqrt{1-\sin^2\alpha\mathstrut} +\sqrt{1-{\sin\mathstrut\!}^2\,\alpha\mathstrut} \] Da sich alle Funktionen durch $\cos\alpha$ und $\sin\alpha$ ausdrücken lassen, können alle auch nur durch eine ausgedrückt werden. @@ -197,7 +197,7 @@ Tabelle~\ref{buch:geometrie:tab:trigo} zusammengestellt ist. &\displaystyle\frac{\sqrt{\csc^2\alpha-1}}{\csc\alpha} \\ \cos\alpha - &\sqrt{1-\sin^2\alpha\mathstrut} + &\sqrt{1-\sin{\!}^2\,\alpha\mathstrut} &\cos\alpha &\displaystyle\frac{1}{\sqrt{1+\tan^2\alpha}} &\displaystyle\frac{\cot\alpha}{\sqrt{1+\cot^2\alpha}} @@ -205,7 +205,7 @@ Tabelle~\ref{buch:geometrie:tab:trigo} zusammengestellt ist. &\displaystyle\frac{1}{\csc\alpha} \\ \tan\alpha - &\displaystyle\frac{\sin\alpha}{\sqrt{1-\sin^2\alpha\mathstrut}} + &\displaystyle\frac{\sin\alpha}{\sqrt{1-\sin{\!}^2\,\alpha\mathstrut}} &\displaystyle\frac{\sqrt{1-\cos^2\alpha\mathstrut}}{\cos\alpha} &\tan\alpha &\displaystyle\frac{1}{\cot\alpha} @@ -213,7 +213,7 @@ Tabelle~\ref{buch:geometrie:tab:trigo} zusammengestellt ist. &\displaystyle\sqrt{\csc^2\alpha-1} \\ \cot\alpha - &\displaystyle\frac{\sqrt{1-\sin^2\alpha\mathstrut}}{\sin\alpha} + &\displaystyle\frac{\sqrt{1-\sin{\!}^2\,\alpha\mathstrut}}{\sin\alpha} &\displaystyle\frac{\cos\alpha}{\sqrt{1-\cos^2\alpha\mathstrut}} &\displaystyle\frac{1}{\tan\alpha} &\cot\alpha @@ -229,7 +229,7 @@ Tabelle~\ref{buch:geometrie:tab:trigo} zusammengestellt ist. &\displaystyle\frac{\csc\alpha}{\sqrt{\csc^2\alpha-1}} \\ \csc\alpha - &\displaystyle\frac{1}{\sqrt{1-\sin^2\alpha\mathstrut}} + &\displaystyle\frac{1}{\sqrt{1-\sin{\!}^2\,\alpha\mathstrut}} &\displaystyle\frac{1}{\cos\alpha} &\displaystyle\sqrt{1+\tan^2\alpha} &\displaystyle\frac{\sqrt{1+\cot^2\alpha}}{\cot\alpha} @@ -394,6 +394,7 @@ D_{\alpha}D_{\beta} Aus dem Vergleich der beiden Matrizen liest man die Additionstheoreme. \begin{satz} +\index{Satz!Drehmatrizen}% Für $\alpha,\beta\in\mathbb{R}$ gilt \begin{align*} \sin(\alpha\pm\beta) |