diff options
author | Nicolas Tobler <nicolas.tobler@ost.ch> | 2022-05-30 00:06:46 +0200 |
---|---|---|
committer | Nicolas Tobler <nicolas.tobler@ost.ch> | 2022-05-30 00:06:46 +0200 |
commit | 65a3fc106c36dfd1750f8caf8b3d1b5fb0fe71f9 (patch) | |
tree | 30791dc17973690a6d761589de357c452ba9fa29 /buch/chapters/040-rekursion/beta.tex | |
parent | Added content, presentation (diff) | |
parent | beispiel korrektur (diff) | |
download | SeminarSpezielleFunktionen-65a3fc106c36dfd1750f8caf8b3d1b5fb0fe71f9.tar.gz SeminarSpezielleFunktionen-65a3fc106c36dfd1750f8caf8b3d1b5fb0fe71f9.zip |
Merge branch 'master' of https://github.com/AndreasFMueller/SeminarSpezielleFunktionen
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/040-rekursion/beta.tex | 104 |
1 files changed, 20 insertions, 84 deletions
diff --git a/buch/chapters/040-rekursion/beta.tex b/buch/chapters/040-rekursion/beta.tex index ea847bc..ff59bad 100644 --- a/buch/chapters/040-rekursion/beta.tex +++ b/buch/chapters/040-rekursion/beta.tex @@ -3,11 +3,17 @@ % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % -\subsection{Die Beta-Funktion -\label{buch:rekursion:gamma:subsection:beta}} +\section{Die Beta-Funktion +\label{buch:rekursion:gamma:section:beta}} Die Eulersche Integralformel für die Gamma-Funktion in -Definition~\ref{buch:rekursion:def:gamma} wurde bisher nicht -gerechtfertigt. +Definition~\ref{buch:rekursion:def:gamma} wurde in +Abschnitt~\ref{buch:subsection:integral-eindeutig} +mit dem Satz von Mollerup gerechtfertigt. +Man kann Sie aber auch als Grenzfall der Beta-Funktion verstehen, +die in diesem Abschnitt dargestellt wird. + + +\subsection{Beta-Integral} In diesem Abschnitt wird das Beta-Integral eingeführt, eine Funktion von zwei Variablen, welches eine Integral-Definition mit einer reichaltigen Menge von Rekursionsbeziehungen hat, die sich direkt auf @@ -233,6 +239,16 @@ B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} berechnet werden. \end{satz} +% +% Info über die Beta-Verteilung +% +\input{chapters/040-rekursion/betaverteilung.tex} + +\subsection{Weitere Eigenschaften der Gamma-Funktion} +Die nahe Verwandtschaft der Gamma- mit der Beta-Funktion ermöglicht +nun, weitere Eigenschaften der Gamma-Funktion mit Hilfe der Beta-Funktion +herzuleiten. + \subsubsection{Nochmals der Wert von $\Gamma(\frac12)$?} Der Wert von $\Gamma(\frac12)=\sqrt{\pi}$ wurde bereits in \eqref{buch:rekursion:gamma:wert12} @@ -484,83 +500,3 @@ Setzt man $x=\frac12$ in die Verdoppelungsformel ein, erhält man in Übereinstimmung mit dem aus \eqref{buch:rekursion:gamma:gamma12} bereits bekannten Wert. -\subsubsection{Beta-Funktion und Binomialkoeffizienten} -Die Binomialkoeffizienten können mit Hilfe der Fakultät als -\begin{align*} -\binom{n}{k} -&= -\frac{n!}{(n-k)!\,k!} -\intertext{geschrieben werden. -Drückt man die Fakultäten durch die Gamma-Funktion aus, erhält man} -&= -\frac{\Gamma(n+1)}{\Gamma(n-k+1)\Gamma(k+1)}. -\intertext{Schreibt man $x=k-1$ und $y=n-k+1$, wird daraus -wegen $x+y=k+1+n-k+1=n+2=(n+1)+1$} -&= -\frac{\Gamma(x+y-1)}{\Gamma(x)\Gamma(y)}. -\intertext{Die Rekursionsformel für die Gamma-Funktion erlaubt, -den Zähler umzuwandeln in $\Gamma(x+y-1)=\Gamma(x+y)/(x+y-1)$, so dass -der Binomialkoeffizient schliesslich} -&= -\frac{\Gamma(x+y)}{(x+y-1)\Gamma(x)\Gamma(y)} -= -\frac{1}{(n-1)B(n-k+1,k+1)} -\label{buch:rekursion:gamma:binombeta} -\end{align*} -geschrieben werden kann. -Die Rekursionsbeziehung -\[ -\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} -\] -der Binomialkoeffizienten erzeugt das vertraute Pascal-Dreieck, -die Formel \eqref{buch:rekursion:gamma:binombeta} für die -Binomialkoeffizienten macht daraus -\[ -\frac{n-1}{B(n-k,k-1)} -= -\frac{n-2}{B(n-k,k-2)} -+ -\frac{n-2}{B(n-k-1,k-1)}, -\] -die für ganzzahlige Argumente gilt. -Wir wollen nachrechnen, dass dies für beliebige Argumente gilt. -\begin{align*} -\frac{(n-1)\Gamma(n-1)}{\Gamma(n-k)\Gamma(k-1)} -&= -\frac{(n-2)\Gamma(n-2)}{\Gamma(n-k)\Gamma(k-2)} -+ -\frac{(n-2)\Gamma(n-2)}{\Gamma(n-k-1)\Gamma(k-1)} -\\ -\frac{\Gamma(n)}{\Gamma(n-k)\Gamma(k-1)} -&= -\frac{\Gamma(n-1)}{\Gamma(n-k)\Gamma(k-2)} -+ -\frac{\Gamma(n-1)}{\Gamma(n-k-1)\Gamma(k-1)} -\intertext{Durch Zusammenfassen der Faktoren im Zähler mit Hilfe -der Rekursionsformel für die Gamma-Funktion und Multiplizieren -mit dem gemeinsamen Nenner -$\Gamma(n-k)\Gamma(k-1)=(n-k-1)\Gamma(n-k-1)(k-2)\Gamma(k-2)$ wird daraus} -\Gamma(n) -&= -(k-2) -\Gamma(n-1) -+ -(n-k-1) -\Gamma(n-1) -\intertext{Indem wir die Rekursionsformel für die Gamma-Funktion auf -die rechte Seite anwenden können wir erreichen, dass in allen Termen -ein Faktor -$\Gamma(n-1)$ auftritt:} -(n-1)\Gamma(n-1) -&= -(k-2)\Gamma(n-1) -+ -(n+k-1)\Gamma(n-1) -\\ -n-1 -&= -k-2 -+ -n-k-1 -\end{align*} - |