diff options
author | Nicolas Tobler <nicolas.tobler@ost.ch> | 2022-05-30 00:06:46 +0200 |
---|---|---|
committer | Nicolas Tobler <nicolas.tobler@ost.ch> | 2022-05-30 00:06:46 +0200 |
commit | 65a3fc106c36dfd1750f8caf8b3d1b5fb0fe71f9 (patch) | |
tree | 30791dc17973690a6d761589de357c452ba9fa29 /buch/chapters/040-rekursion/betaverteilung.tex | |
parent | Added content, presentation (diff) | |
parent | beispiel korrektur (diff) | |
download | SeminarSpezielleFunktionen-65a3fc106c36dfd1750f8caf8b3d1b5fb0fe71f9.tar.gz SeminarSpezielleFunktionen-65a3fc106c36dfd1750f8caf8b3d1b5fb0fe71f9.zip |
Merge branch 'master' of https://github.com/AndreasFMueller/SeminarSpezielleFunktionen
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/040-rekursion/betaverteilung.tex | 487 |
1 files changed, 487 insertions, 0 deletions
diff --git a/buch/chapters/040-rekursion/betaverteilung.tex b/buch/chapters/040-rekursion/betaverteilung.tex new file mode 100644 index 0000000..979d04c --- /dev/null +++ b/buch/chapters/040-rekursion/betaverteilung.tex @@ -0,0 +1,487 @@ +% +% teil1.tex -- Beispiel-File für das Paper +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\subsection{Ordnungsstatistik und Beta-Funktion +\label{buch:rekursion:ordnung:section:ordnungsstatistik}} +\rhead{Ordnungsstatistik und Beta-Funktion} +In diesem Abschnitt ist $X$ eine Zufallsvariable mit der Verteilungsfunktion +$F_X(x)$, und $X_i$, $1\le i\le n$ sei ein Stichprobe von unabhängigen +Zufallsvariablen, die wie $X$ verteilt sind. +Ziel ist, die Verteilungsfunktion und die Wahrscheinlichkeitsdichte +des grössten, zweitgrössten, $k$-t-grössten Wertes in der Stichprobe +zu finden. +Wir schreiben $[n]=\{1,\dots,n\}$ für die Menge der natürlichen +Zahlen von zwischen $1$ und $n$. + +\subsubsection{Verteilung von $\operatorname{max}(X_1,\dots,X_n)$ und +$\operatorname{min}(X_1,\dots,X_n)$ +\label{buch:rekursion:ordnung:subsection:minmax}} +Die Verteilungsfunktion von $\operatorname{max}(X_1,\dots,X_n)$ hat +den Wert +\begin{align*} +F_{\operatorname{max}(X_1,\dots,X_n)}(x) +&= +P(\operatorname{max}(X_1,\dots,X_n) \le x) +\\ +&= +P(X_1\le x\wedge \dots \wedge X_n\le x) +\\ +&= +P(X_1\le x) \cdot \ldots \cdot P(X_n\le x) +\\ +&= +P(X\le x)^n += +F_X(x)^n. +\end{align*} +Für die Gleichverteilung ist +\[ +F_{\text{equi}}(x) += +\begin{cases} +0&\qquad x< 0 +\\ +x&\qquad 0\le x\le 1 +\\ +1&\qquad 1<x. +\end{cases} +\] +In diesem Fall ist Verteilung des Maximums +\[ +F_{\operatorname{max}(X_1,\dots,X_n)}(x) += +\begin{cases} +0&\qquad x<0\\ +x^n&\qquad 0\le x\le 1\\ +1&\qquad 1 < x. +\end{cases} +\] +Mit der zugehörigen Wahrscheinlichkeitsdichte +\[ +\varphi_{\operatorname{max}(X_1,\dots,X_n)} += +\frac{d}{dx} +F_{\operatorname{max}(X_1,\dots,X_n)}(x) += +\begin{cases} +nx^{n-1}&\qquad 0\le x\le 1\\ +0 &\qquad \text{sonst} +\end{cases} +\] +kann man zum Beispiel den Erwartungswert +\[ +E(\operatorname{max}(X_1,\dots,X_n)) += +\int_{-\infty}^\infty +x +\varphi_{\operatorname{X_1,\dots,X_n}}(x) +\,dx += +\int_{0}^1 x\cdot nx^{n-1}\,dt += +\biggl[ +\frac{n}{n+1}x^{n+1} +\biggr]_0^1 += +\frac{n}{n+1} +\] +berechnen. + +Ganz analog kann man auch die Verteilungsfunktion von +$\operatorname{min}(X_1,\dots,X_n)$ bestimmen. +Sie ist +\begin{align*} +F_{\operatorname{min}(X_1,\dots,X_n)}(x) +&= +P(x\le X_1\vee \dots \vee x\le X_n) +\\ +&= +1- +P(x > X_1\wedge \dots \wedge x > X_n) +\\ +&= +1- +(1-P(x\le X_1)) \cdot\ldots\cdot (1-P(x\le X_n)) +\\ +&= +1-(1-F_X(x))^n, +\end{align*} +Im Speziellen für im Intervall $[0,1]$ gleichverteilte $X_i$ ist die +Verteilungsfunktion des Minimums +\[ +F_{\operatorname{min}(X_1,\dots,X_n)}(x) += +\begin{cases} +0 &\qquad x<0 \\ +1-(1-x)^n&\qquad 0\le x\le 1\\ +1 &\qquad 1 < x +\end{cases} +\] +mit Wahrscheinlichkeitsdichte +\[ +\varphi_{\operatorname{min}(X_1,\dots,X_n)} += +\frac{d}{dx} +F_{\operatorname{min}(X_1,\dots,X_n)} += +\begin{cases} +n(1-x)^{n-1}&\qquad 0\le x\le 1\\ +0 &\qquad \text{sonst} +\end{cases} +\] +und Erwartungswert +\begin{align*} +E(\operatorname{min}(X_1,\dots,X_n) +&= +\int_{-\infty}^\infty x\varphi_{\operatorname{min}(X_1,\dots,X_n)}(x)\,dx += +\int_0^1 x\cdot n(1-x)^{n-1}\,dx +\\ +&= +\bigl[ -x(1-x)^n \bigr]_0^1 + \int_0^1 (1-x)^n\,dx += +\biggl[ +- +\frac{1}{n+1} +(1-x)^{n+1} +\biggr]_0^1 += +\frac{1}{n+1}. +\end{align*} +Es ergibt sich daraus als natürlich Verallgemeinerung die Frage nach +der Verteilung des zweitegrössten oder zweitkleinsten Wertes unter den +Werten $X_i$. + +\subsubsection{Der $k$-t-grösste Wert} +Sie wieder $X_i$ eine Stichprobe von $n$ unabhängigen wie $X$ verteilten +Zufallsvariablen. +Diese werden jetzt der Grösse nach sortiert, die sortierten Werte werden +mit +\[ +X_{1:n} \le X_{2:n} \le \dots \le X_{(n-1):n} \le X_{n:n} +\] +bezeichnet. +Die Grössen $X_{k:n}$ sind Zufallsvariablen, sie heissen die $k$-ten +Ordnungsstatistiken. +Die in Abschnitt~\ref{buch:rekursion:ordnung:subsection:minmax} behandelten Zufallsvariablen +$\operatorname{min}(X_1,\dots,X_n)$ +und +$\operatorname{max}(X_1,\dots,X_n)$ +sind die Fälle +\begin{align*} +X_{1:n} &= \operatorname{min}(X_1,\dots,X_n) \\ +X_{n:n} &= \operatorname{max}(X_1,\dots,X_n). +\end{align*} + +Um den Wert der Verteilungsfunktion von $X_{k:n}$ zu berechnen, müssen wir +die Wahrscheinlichkeit bestimmen, dass $k$ der $n$ Werte $X_i$ $x$ nicht +übersteigen. +Der $k$-te Wert $X_{k:n}$ übersteigt genau dann $x$ nicht, wenn +mindestens $k$ der Zufallswerte $X_i$ $x$ nicht übersteigen, also +\[ +P(X_{k:n} \le x) += +P\left( +|\{i\in[n]\,|\, X_i\le x\}| \ge k +\right). +\] + +Das Ereignis $\{X_i\le x\}$ ist eine Bernoulli-Experiment, welches mit +Wahrscheinlichkeit $F_X(x)$ eintritt. +Die Anzahl der Zufallsvariablen $X_i$, die $x$ übertreffen, ist also +Binomialverteilt mit $p=F_X(x)$. +Damit haben wir gefunden, dass mit Wahrscheinlichkeit +\begin{equation} +F_{X_{k:n}}(x) += +P(X_{k:n}\le x) += +\sum_{i=k}^n \binom{n}{i}F_X(x)^i (1-F_X(x))^{n-i} +\label{buch:rekursion:ordnung:eqn:FXkn} +\end{equation} +mindestens $k$ der Zufallsvariablen den Wert $x$ überschreiten. + +\subsubsection{Wahrscheinlichkeitsdichte der Ordnungsstatistik} +Die Wahrscheinlichkeitsdichte der Ordnungsstatistik kann durch Ableitung +von \eqref{buch:rekursion:ordnung:eqn:FXkn} gefunden, werden, sie ist +\begin{align*} +\varphi_{X_{k:n}}(x) +&= +\frac{d}{dx} +F_{X_{k:n}}(x) +\\ +&= +\sum_{i=k}^n +\binom{n}{i} +\bigl( +iF_X(x)^{i-1}\varphi_X(x) (1-F_X(x))^{n-i} +- +F_X(x)^k +(n-i) +(1-F_X(x))^{n-i-1} +\varphi_X(x) +\bigr) +\\ +&= +\sum_{i=k}^n +\binom{n}{i} +\varphi_X(x) +F_X(x)^{i-1}(1-F_X(x))^{n-i-1} +\bigl( +iF_X(x)-(n-i)(1-F_X(x)) +\bigr) +\\ +&= +\varphi_X(x) +\biggl( +\sum_{i=k}^n i\binom{n}{i} F_X(x)^{i-1}(1-F_X(x))^{n-i} +- +\sum_{j=k}^n (n-j)\binom{n}{j} F_X(x)^{j}(1-F_X(x))^{n-j-1} +\biggr) +\\ +&= +\varphi_X(x) +\biggl( +\sum_{i=k}^n i\binom{n}{i} F_X(x)^{i-1}(1-F_X(x))^{n-i} +- +\sum_{i=k+1}^{n+1} (n-i+1)\binom{n}{i-1} F_X(x)^{i-1}(1-F_X(x))^{n-i} +\biggr) +\\ +&= +\varphi_X(x) +\biggl( +k\binom{n}{k}F_X(x)^{k-1}(1-F_X(x))^{n-k} ++ +\sum_{i=k+1}^{n+1} +\left( +i\binom{n}{i} +- +(n-i+1)\binom{n}{i-1} +\right) +F_X(x)^{i-1}(1-F_X(x))^{n-i} +\biggr) +\end{align*} +Mit den wohlbekannten Identitäten für die Binomialkoeffizienten +\begin{align*} +i\binom{n}{i} +- +(n-i+1)\binom{n}{i-1} +&= +n\binom{n-1}{i-1} +- +n +\binom{n-1}{i-1} += +0 +\end{align*} +folgt jetzt +\begin{align*} +\varphi_{X_{k:n}}(x) +&= +\varphi_X(x)k\binom{n}{k} F_X(x)^{k-1}(1-F_X(x))^{n-k}(x). +\intertext{Im Speziellen für gleichverteilte Zufallsvariablen $X_i$ ist +} +\varphi_{X_{k:n}}(x) +&= +k\binom{n}{k} x^{k-1}(1-x)^{n-k}. +\end{align*} +Dies ist die Wahrscheinlichkeitsdichte einer Betaverteilung +\[ +\beta(k,n-k+1)(x) += +\frac{1}{B(k,n-k+1)} +x^{k-1}(1-x)^{n-k}. +\] +Tatsächlich ist die Normierungskonstante +\begin{align} +\frac{1}{B(k,n-k+1)} +&= +\frac{\Gamma(n+1)}{\Gamma(k)\Gamma(n-k+1)} += +\frac{n!}{(k-1)!(n-k)!}. +\label{buch:rekursion:ordnung:betaverteilung:normierung1} +\end{align} +Andererseits ist +\[ +k\binom{n}{k} += +k\frac{n!}{k!(n-k)!} += +\frac{n!}{(k-1)!(n-k)!}, +\] +in Übereinstimmung mit~\eqref{buch:rekursion:ordnung:betaverteilung:normierung1}. +Die Verteilungsfunktion und die Wahrscheinlichkeitsdichte der +Ordnungsstatistik sind in Abbildung~\ref{buch:rekursion:ordnung:fig:order} dargestellt. + +\begin{figure} +\centering +\includegraphics{chapters/040-rekursion/images/order.pdf} +\caption{Verteilungsfunktion und Wahrscheinlichkeitsdichte der +Ordnungsstatistiken $X_{k:n}$ einer gleichverteilung Zuvallsvariable +mit $n=10$. +\label{buch:rekursion:ordnung:fig:order}} +\end{figure} + +% +% Die Beta-Funktion +% +\subsection{Die Beta-Verteilung +\label{buch:rekursion:subsection:beta-verteilung}} +Die Wahrscheinlichkeitsdichte, die im +Abschnitt~\ref{buch:rekursion:ordnung:section:ordnungsstatistik} +gefunden worden ist, ist nicht nur für ganzzahlige Exponenten +definiert. + +\begin{figure} +\centering +\includegraphics[width=0.92\textwidth]{chapters/040-rekursion/images/beta.pdf} +\caption{Wahrscheinlichkeitsdichte der Beta-Verteilung +$\beta(a,b,x)$ +für verschiedene Werte der Parameter $a$ und $b$. +Die Werte des Parameters für einen Graphen einer Beta-Verteilung +sind im kleinen Quadrat rechts im Graphen +als Punkt mit der gleichen Farbe dargestellt. +\label{buch:rekursion:ordnung:fig:betaverteilungn}} +\end{figure} + +\begin{definition} +Die Beta-Verteilung ist die Verteilung mit der Wahrscheinlichkeitsdichte +\[ +\beta_{a,b}(x) += +\begin{cases} +\displaystyle +\frac{1}{B(a,b)} +x^{a-1}(1-x)^{b-1}&\qquad 0\le x \le 1\\ +0&\qquad\text{sonst.} +\end{cases} +\] +\end{definition} + +Die Beta-Funktion ist also die Normierungskonstante der Beta-Verteilung. +Die wichtigsten Kennzahlen der Beta-Verteilung wie Erwartungswert und +Varianz lassen sich alle ebenfalls als Werte der Beta-Funktion ausdrücken. + +\subsubsection{Erwartungswert} +Mit der Wahrscheinlichkeitsdichte kann man jetzt auch den Erwartungswerte +der $k$-ten Ordnungsstatistik bestimmen. +Die Rechnung ergibt: +\begin{align*} +E(X_{k:n}) +&= +\int_0^1 x\cdot k\binom{n}{k} x^{k-1}(1-x)^{n-k}\,dx += +k +\binom{n}{k} +\int_0^1 +x^{k}(1-x)^{n-k}\,dx. +\intertext{Dies ist das Beta-Integral} +&= +k\binom{n}{k} +B(k+1,n-k+1) +\intertext{welches man durch Gamma-Funktionen bzw.~durch Fakultäten wie in} +&= +k\frac{n!}{k!(n-k)!} +\frac{\Gamma(k+1)\Gamma(n-k+1)}{n+2} += +k\frac{n!}{k!(n-k)!} +\frac{k!(n-k)!}{(n+1)!} += +\frac{k}{n+1} +\end{align*} +ausdrücken kann. +Die Erwartungswerte haben also regelmässige Abstände, sie sind in +Abbildung~\ref{buch:rekursion:ordnung:fig:order} als blaue vertikale Linien eingezeichnet. + +Für die Beta-Verteilung lässt sich die Rechnung noch allgemeiner +durchführen. +Der Erwartungswert einer $\beta_{a,b}$-verteilten Zufallsvariablen $X$ +ist +\begin{align*} +E(X) +&= +\int_0^1 x \beta_{a,b}(x)\,dx += +\frac{1}{B(a,b)} +\int_0^1 x\cdot x^{a-1}(1-x)^{b-1}\,dx += +\frac{B(a+1,b)}{B(a,b)} += +\frac{a}{a+b}. +\end{align*} +Durch Einsetzen von $a=k+1$ und $b=n-k+1$ lassen sich die für die +Ordnungsstatistik berechneten Werte wiederfinden. + +\subsubsection{Varianz} +Auch die Varianz lässt sich einfach berechnen, dazu muss zunächst +der Erwartungswert von $X_{k:n}^2$ bestimmt werden. +Er ist +\begin{align*} +E(X_{k:n}^2) +&= +\int_0^1 x^2\cdot k\binom{n}{k} x^{k-1}(1-x)^{n-k}\,dx += +k +\binom{n}{k} +\int_0^1 +x^{k+1}(1-x)^{n-k}\,dx. +\intertext{Auch dies ist ein Beta-Integral, nämlich} +&= +k\binom{n}{k} +B(k+2,n-k+1) += +k\frac{n!}{k!(n-k)!} +\frac{(k+1)!(n-k)!}{(n+2)!} += +\frac{k(k+1)}{(n+1)(n+2)}. +\end{align*} +Die Varianz wird damit +\begin{align} +\operatorname{var}(X_{k:n}) +&= +E(X_{k:n}^2) - E(X_{k:n})^2 +\notag +\\ +& += +\frac{k(k+1)}{(n+1)(n+2)}-\frac{k^2}{(n+1)^2} += +\frac{k(k+1)(n+1)-k^2(n+2)}{(n+1)^2(n+2)} += +\frac{k(n-k+1)}{(n+1)^2(n+2)}. +\label{buch:rekursion:ordnung:eqn:ordnungsstatistik:varianz} +\end{align} +In Abbildung~\ref{buch:rekursion:ordnung:fig:order} ist die Varianz der +Ordnungsstatistik $X_{k:n}$ für $k=7$ und $n=10$ als oranges +Rechteck dargestellt. + +Auch die Varianz kann ganz allgemein für die Beta-Verteilung +bestimmt werden. +Dazu berechnen wir zunächst +\begin{align*} +E(X^2) +&= +\frac{1}{B(a,b)} +\int_0^1 +x^2\cdot x^{a-1}(1-y)^{b-1}\,dx += +\frac{B(a+2,b)}{B(a,b)}. +\end{align*} +Daraus folgt dann +\[ +\operatorname{var}(X) += +E(X^2)-E(X)^2 += +\frac{B(a+2,b)B(a,b)-B(a+1,b)^2}{B(a,b)^2}. +\] + +Die Formel~\eqref{buch:rekursion:ordnung:eqn:ordnungsstatistik:varianz} +besagt auch, dass die Varianz der proportional ist zu $k((n+1)-k)$. +Dieser Ausdruck ist am grössten für $k=(n+1)/2$, die Varianz ist +also grösser für die ``mittleren'' Ordnungstatistiken als für die +extremen $X_{1:n}=\operatorname{min}(X_1,\dots,X_n)$ und +$X_{n:n}=\operatorname{max}(X_1,\dots,X_n)$. + |