diff options
author | HeadAndToes <55713950+HeadAndToes@users.noreply.github.com> | 2022-07-19 16:42:27 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-07-19 16:42:27 +0200 |
commit | c4fd6a857d14abdcc91ce84237f542561520d15a (patch) | |
tree | 8465f77faf415379e84bd112e67cc4d27113201d /buch/chapters/040-rekursion/bohrmollerup.tex | |
parent | Korrektur Feedback (diff) | |
parent | makefile fix (diff) | |
download | SeminarSpezielleFunktionen-c4fd6a857d14abdcc91ce84237f542561520d15a.tar.gz SeminarSpezielleFunktionen-c4fd6a857d14abdcc91ce84237f542561520d15a.zip |
Merge branch 'AndreasFMueller:master' into master
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/040-rekursion/bohrmollerup.tex | 17 |
1 files changed, 17 insertions, 0 deletions
diff --git a/buch/chapters/040-rekursion/bohrmollerup.tex b/buch/chapters/040-rekursion/bohrmollerup.tex index cd9cadc..57e503a 100644 --- a/buch/chapters/040-rekursion/bohrmollerup.tex +++ b/buch/chapters/040-rekursion/bohrmollerup.tex @@ -5,12 +5,27 @@ % \subsection{Der Satz von Bohr-Mollerup \label{buch:rekursion:subsection:bohr-mollerup}} +\begin{figure} +\centering +\includegraphics{chapters/040-rekursion/images/loggammaplot.pdf} +\caption{Der Graph der Funktion $\log|\Gamma(x)|$ ist für $x>0$ konvex. +Die blau hinterlegten Bereiche zeigen an, wo die Gamma-Funktion +negative Werte annimmt. +\label{buch:rekursion:gamma:loggammaplot}} +\end{figure} Die Integralformel und die Grenzwertdefinition für die Gamma-Funktion zeigen beide, dass das Problem der Ausdehnung der Fakultät zu einer Funktion $\mathbb{C}\to\mathbb{C}$ eine Lösung hat, aber es ist noch nicht klar, in welchem Sinn dies die einzig mögliche Lösung ist. Der Satz von Bohr-Mollerup gibt darauf eine Antwort. +Der Graph +in Abbildung~\ref{buch:rekursion:gamma:loggammaplot} +zeigt, dass die Werte der Gamma-Funktion für $x>0$ so schnell +anwachsen, dass sogar die Funktion $\log|\Gamma(x)|$ konvex ist. +Der Satz von Bohr-Mollerup besagt, dass diese Eigenschaft zur +Charakterisierung der Gamma-Funktion verwendet werden kann. + \begin{satz} \label{buch:satz:bohr-mollerup} Eine Funktion $f\colon \mathbb{R}^+\to\mathbb{R}$ mit den Eigenschaften @@ -20,6 +35,8 @@ Eine Funktion $f\colon \mathbb{R}^+\to\mathbb{R}$ mit den Eigenschaften \item die Funktion $\log f(t)$ ist konvex \end{enumerate} ist die Gamma-Funktion: $f(t)=\Gamma(t)$. +\index{Satz!von Bohr-Mollerup}% +\index{Bohr-Mollerup, Satz von}% \end{satz} Für den Beweis verwenden wir die folgende Eigenschaft einer konvexen |