diff options
author | JODBaer <55744603+JODBaer@users.noreply.github.com> | 2022-06-13 09:18:25 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-06-13 09:18:25 +0200 |
commit | 3010b2b87e56a8e2fbc2476b9971d9ef886f17a0 (patch) | |
tree | 9de92825e4293741d7d617d40e661fb5863bb8b9 /buch/chapters/060-integral/iproblem.tex | |
parent | Merge branch 'AndreasFMueller:master' into master (diff) | |
parent | flow (diff) | |
download | SeminarSpezielleFunktionen-3010b2b87e56a8e2fbc2476b9971d9ef886f17a0.tar.gz SeminarSpezielleFunktionen-3010b2b87e56a8e2fbc2476b9971d9ef886f17a0.zip |
Merge branch 'AndreasFMueller:master' into master
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/060-integral/iproblem.tex | 93 |
1 files changed, 93 insertions, 0 deletions
diff --git a/buch/chapters/060-integral/iproblem.tex b/buch/chapters/060-integral/iproblem.tex new file mode 100644 index 0000000..85db464 --- /dev/null +++ b/buch/chapters/060-integral/iproblem.tex @@ -0,0 +1,93 @@ +% +% iproblem.tex +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue +% +\subsection{Das Integrationsproblem +\label{buch:integral:subsection:integrationsproblem}} +\index{Integrationsproblem}% +Die Ableitung ist ein einem Differentialkörper mit Hilfe der Ableitungsregeln +immer ausführbar, ganz ähnlich wie die Berechnung von Potenzen in einem Körper +immer ausführbar ist. +Die Umkehrung, also eine sogenannte Stammfunktion zu finden, ist dagegen +deutlich schwieriger. + +\begin{definition} +\index{Stammfunktion} +Eine {\em Stammfunktion} einer Funktion $f\in\mathscr{K}$ im Funktionenkörper +$\mathscr{K}$ ist eine Funktion $F\in\mathscr{K}$ derart, dass $F'=f$. +Wir schreiben auch $F=\int f$. +\end{definition} + +Zwei Stammfunktionen $F_1$ und $F_2$ einer Funktion $f\in\mathscr{K}$ +haben die Eigenschaft +\[ +\left.\begin{aligned} +F_1' &= f \\ +F_2' &= f +\end{aligned}\quad\right\} +\qquad +\Rightarrow +\qquad +(F_1-F_2)' = 0 +\qquad\Rightarrow\qquad +F_1-F_2\in\mathscr{C}, +\] +die beiden Stammfunktionen unterscheiden sich daher nur durch eine +Konstante. + +\subsubsection{Stammfunktion von Polynomen} +Für Polynome ist das Problem leicht lösbar. +Aus der Ableitungsregel +\[ +\frac{d}{dx} x^n = nx^{n-1} +\] +folgt, dass +\[ +\int x^n = \frac{1}{n+1} x^{n+1} +\] +eine Stammfunktion von $x^n$ ist. +Da $\int$ linear ist, ergibt sich damit auch eine Stammfunktion für +ein beliebiges Polynom +\[ +g(x) += +g_0 + g_1x + g_2x^2 + \dots g_nx^n += +\sum_{k=0}^n g_kx^k +\in\mathbb{Q}(x) +\] +angeben: +\begin{equation} +\int g(x) += +g_0x + \frac12g_1x^2 + \frac13g_2x^3 + \dots \frac{1}{n+1}g_nx^{n+1} += +\sum_{k=0}^n +\frac{g_k}{k+1}x^{k+1}. +\label{buch:integral:iproblem:eqn:polyintegral} +\end{equation} + +\subsubsection{Körpererweiterungen} +Obwohl die Ableitung in einem Differentialkörper immer ausgeführt werden +kann, gibt es keine Garantie, dass es eine Stammfunktion im gleichen +Körper gibt. +Im kleinsten denkbaren Funktionenkörper $\mathbb{Q}(x)$ +haben die negativen Potenzen linearer Funktionen die Stammfunktionen +\[ +\int +\frac{1}{(x-\alpha)^k} += +\frac{1}{(-k+1)(x-\alpha)^{k-1}} +\] +für $k\ne 1$, sind also wieder in $\mathbb{Q}(x)$. +Für $k=1$ ist aber +\[ +\int \frac{1}{x-\alpha} += +\log(x-\alpha), +\] +es braucht also eine Körpererweiterung um $\log(x-\alpha)$, damit +$(x-\alpha)^{-1}$ eine Stammfunktion in $\mathbb{Q}(x,\log(x-\alpha))$ +hat. + |