diff options
author | Nicolas Tobler <nicolas.tobler@ost.ch> | 2022-05-30 00:06:46 +0200 |
---|---|---|
committer | Nicolas Tobler <nicolas.tobler@ost.ch> | 2022-05-30 00:06:46 +0200 |
commit | 65a3fc106c36dfd1750f8caf8b3d1b5fb0fe71f9 (patch) | |
tree | 30791dc17973690a6d761589de357c452ba9fa29 /buch/chapters/060-integral/irat.tex | |
parent | Added content, presentation (diff) | |
parent | beispiel korrektur (diff) | |
download | SeminarSpezielleFunktionen-65a3fc106c36dfd1750f8caf8b3d1b5fb0fe71f9.tar.gz SeminarSpezielleFunktionen-65a3fc106c36dfd1750f8caf8b3d1b5fb0fe71f9.zip |
Merge branch 'master' of https://github.com/AndreasFMueller/SeminarSpezielleFunktionen
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/060-integral/irat.tex | 140 |
1 files changed, 140 insertions, 0 deletions
diff --git a/buch/chapters/060-integral/irat.tex b/buch/chapters/060-integral/irat.tex new file mode 100644 index 0000000..4c472ea --- /dev/null +++ b/buch/chapters/060-integral/irat.tex @@ -0,0 +1,140 @@ +% +% irat.tex +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue +% +\subsection{Integration rationaler Funktionen +\label{buch:integral:subsection:rationalefunktionen}} +Für die Integration der rationalen Funktionen lernt man in einem +Analysis-Kurs üblicherweise ein Lösungsverfahren. +Dies zeigt zunächst, dass rationale Funktionen immer eine Stammfunktion +in einem geeigneten Erweiterungskörper haben. +Es deutet aber auch an, dass Stammfunktionen eine ziemlich spezielle +Form haben, die später als +Satz von Liouville~\ref{buch:integral:satz:liouville} +ein besondere Rolle spielen wird. + +% +% Aufgabenstellung +% +\subsubsection{Aufgabenstellung} +In diesem Abschnitt ist eine rationale Funktion $f(x)\in\mathbb{Q}(x)$ +gegeben, deren Stammfunktion bestimmt werden soll. +Als rationale Funktion kann sie als Bruch +\begin{equation} +f(x) = \frac{p(x)}{q(x)} +\label{buch:integral:irat:eqn:quotient} +\end{equation} +mit Polynomen $p(x),q(x)\in\mathbb{Q}[x]$ geschrieben werden. +Gesucht ist ein Erweiterungskörper $\mathscr{K}\supset \mathbb{Q}(x)$ +derart und eine Stammfunktion $F\in\mathscr{K}$ von $f$, also $F'=f$. + +% +% Polynomdivision +% +\subsubsection{Polynomdivision} +Der Quotient~\eqref{buch:integral:irat:eqn:quotient} kann durch Polynomdivision +mit Rest vereinfacht werden in einen polynomialen Teil und einen echten +Bruch: +\begin{equation} +f(x) += +g(x) ++ +\frac{a(x)}{b(x)} +\label{buch:integral:irat:eqn:polydiv} +\end{equation} +mit Polynomen $g(x),a(x),b(x)\in\mathbb[Q](x)$ und $\deg a(x) < \deg b(x)$. +Für den ersten Summanden liefert +\eqref{buch:integral:iproblem:eqn:polyintegral} eine Stammfunktion. +Im Folgenden bleibt also nur noch der zweite Term zu behandeln. + +% +% Partialbruchzerlegung +% +\subsubsection{Partialbruchzerlegung} +Zur Berechnung des Integral des Bruchs +in~\eqref{buch:integral:irat:eqn:polydiv} wird die Partialbruchzerlegung +benötigt. +Der Einfachheit halber nehmen wir an, dass wir den Körper $\mathbb{Q}(x)$ +mit alle Nullstellen $\beta_i$ des Nenner-Polynoms $b(x)$ zu einem Körper +$\mathscr{K}$ erweitert haben, in dem Nenner in Linearfaktoren zerfällt. +Unter diesen Voraussetzungen hat die Partialbruchzerlegung die Form +\begin{equation} +\frac{a(x)}{b(x)} += +\sum_{i=1}^m +\sum_{k=1}^{k_i} +\frac{A_{ik}}{(x-\beta_i)^k}, +\label{buch:integral:irat:eqn:partialbruch} +\end{equation} +wobei $k_i$ die Vielfachheit der Nullstelle $\beta_i$ ist. +Die Koeffizienten $A_{ik}$ können zum Beispiel mit Hilfe eines linearen +Gleichungssystems bestimmt werden. + +Um eine Stammfunktion zu finden, muss man also Stammfunktionen für +jeden einzelnen Summanden bestimmen. +Für Exponenten $k>1$ im Nenner eines Terms der +Partialbruchzerlegung~\eqref{buch:integral:irat:eqn:partialbruch} +kann dazu die Regel +\[ +\int \frac{A_{ik}}{(x-\beta_i)^k} += +\frac{A_{ik}}{(-k+1)(x-\beta_i)^{k-1}} +\] +verwendet werden. +Diese Stammfunktion liegt wieder in $\mathscr{K}(x)$ liegt. + +% +% Körpererweiterungen +% +\subsubsection{Körpererweiterung} +Für $k=1$ ist eine logarithmische Erweiterung um die Funktion +\begin{equation} +\int \frac{A_{i1}}{x-\alpha_i} += +A_{i1} +\log(x-\alpha_i) +\label{buch:integral:irat:eqn:logs} +\end{equation} +nötig. +Es gibt also eine Stammfunktion in einem Erweiterungskörper, sofern +er zusätzlich alle logarithmischen Funktionen +in~\ref{buch:integral:irat:eqn:logs} enthält. +Sie hat die Form +\[ +\sum_{i=1}^m A_{i1} \log(x-\beta_i), +\] +wobei $A_{i1}\in\mathscr{K}$ ist. + +Setzt man alle vorher schon gefundenen Teile der Stammfunktion zusammen, +kann man sehen, dass die Stammfunktion die Form +\begin{equation} +F(x) = v_0(x) + \sum_{i=1}^m c_i \log v_i(x) +\label{buch:integral:irat:eqn:liouvillstammfunktion} +\end{equation} +haben muss. +Dabei ist $v_0(x)\in\mathscr{K}(x)$ und besteht aus der Stammfunktion +des polynomiellen Teils und den Stammfunktionen der Terme der Partialbruchzerlegung mit Exponenten $k>1$. +Die logarithmischen Terme bestehen aus den Konstanten $c_i=A_{i1}$ +und den Logarithmusfunktionen $v_i(x)=x-\beta_i\in\mathscr{K}(x)$. +Die Funktion $f(x)$ muss daher die Form +\[ +f(x) += +v_0'(x) ++ +\sum_{i=1}^m c_i\frac{v'_i(x)}{v_i(x)} +\] +gehabt haben. +Die Form~\eqref{buch:integral:irat:eqn:liouvillstammfunktion} +der Stammfunktion ist nicht eine Spezialität der rationalen Funktionen. +Sie wird auch bei grösseren Funktionenkörpern immer wieder auftreten +und ist als Satz von Liouville bekannt. + +% +% Minimale algebraische Erweiterung +% +\subsubsection{Minimale algebraische Erweiterung} +XXX Rothstein-Trager + |