aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/060-integral/logexp.tex
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@othello.ch>2022-05-28 14:57:18 +0200
committerAndreas Müller <andreas.mueller@othello.ch>2022-05-28 14:57:18 +0200
commitdf8e535423f408f789f0cb624df7a4980572bc4d (patch)
tree33ca4761260aad2db82542b66c234303b6656550 /buch/chapters/060-integral/logexp.tex
parentMerge branch 'master' of github.com:AndreasFMueller/SeminarSpezielleFunktionen (diff)
downloadSeminarSpezielleFunktionen-df8e535423f408f789f0cb624df7a4980572bc4d.tar.gz
SeminarSpezielleFunktionen-df8e535423f408f789f0cb624df7a4980572bc4d.zip
more onm integration and lemniscate
Diffstat (limited to '')
-rw-r--r--buch/chapters/060-integral/logexp.tex20
1 files changed, 11 insertions, 9 deletions
diff --git a/buch/chapters/060-integral/logexp.tex b/buch/chapters/060-integral/logexp.tex
index 2bfe0e1..e0efab2 100644
--- a/buch/chapters/060-integral/logexp.tex
+++ b/buch/chapters/060-integral/logexp.tex
@@ -3,7 +3,7 @@
%
% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue
%
-\subsection{Log-Exp-Notation für elementare Funktionen
+\subsection{Log-Exp-Notation für trigonometrische und hyperbolische Funktionen
\label{buch:integral:subsection:logexp}}
Die Integration rationaler Funktionen hat bereits gezeigt, dass
eine Stammfunktion nicht immer im Körper der rationalen Funktionen
@@ -37,6 +37,7 @@ x \operatorname{arcosh} x - \sqrt{x^2-1}.
In der Stammfunktion treten Funktionen auf, die auf den ersten
Blick nichts mit den Funktionen im Integranden zu tun haben.
+\subsubsection{Trigonometrische und hyperbolische Funktionen}
Die trigonometrischen und hyperbolichen Funktionen
in~\eqref{buch:integration:risch:allgform}
lassen sich alle durch Exponentialfunktionen ausdrücken.
@@ -53,7 +54,7 @@ So gilt
&\qquad&
\cosh x &= \frac12\bigl( e^x + e^{-x} \bigr).
\end{aligned}
-\label{buch:integral:risch:trighypinv}
+\label{buch:integral:risch:trighyp}
\end{equation}
Nach Multiplikation mit $e^{ix}$ bzw.~$e^{x}$ entsteht eine
quadratische Gleichung in $e^{ix}$ bzw.~$e^{x}$.
@@ -66,27 +67,27 @@ Die Rechnung ergibt
&=
\frac{1}{i}\log\bigl(
iy\pm\sqrt{1-y^2}
-\bigr)
+\bigr),
&
&\qquad&
\arccos y
&=
\log\bigl(
y\pm \sqrt{y^2-1}
-\bigr)
+\bigr),
\\
\operatorname{arsinh}y
&=
\log\bigl(
y \pm \sqrt{1+y^2}
-\bigr)
+\bigr),
&
&\qquad&
\operatorname{arcosh} y
&=
\log\bigl(
y\pm \sqrt{y^2-1}
-\bigr)
+\bigr).
\end{aligned}
\label{buch:integral:risch:trighypinv}
\end{equation}
@@ -97,6 +98,7 @@ Man nennt dies die $\log$-$\exp$-Notation der trigonometrischen
und hyperbolischen Funktionen.
\index{logexpnotation@$\log$-$\exp$-Notation}%
+\subsubsection{$\log$-$\exp$-Notation}
Wendet man die Substitutionen
\eqref{buch:integral:risch:trighyp}
und
@@ -110,7 +112,7 @@ an, entstehen die Beziehungen
&=
\frac12i\bigl(
\log(1-ix) - \log(1+ix)
-\bigr)
+\bigr),
\\
\int\bigl(
{\textstyle\frac12}
@@ -121,12 +123,12 @@ e^{-ix}
\bigr)
&=
-{\textstyle\frac12}ie^{ix}
-+{\textstyle\frac12}ie^{-ix}
++{\textstyle\frac12}ie^{-ix},
\\
\int
\frac{1}{\sqrt{1-x^2}}
&=
--i\log\bigl(ix+\sqrt{1-x^2})
+-i\log\bigl(ix+\sqrt{1-x^2}),
\\
\int \log\bigl(x+\sqrt{x^2-1}\bigr)
&=