aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/060-integral/sqrat.tex
diff options
context:
space:
mode:
authorJODBaer <55744603+JODBaer@users.noreply.github.com>2022-06-13 09:18:25 +0200
committerGitHub <noreply@github.com>2022-06-13 09:18:25 +0200
commit3010b2b87e56a8e2fbc2476b9971d9ef886f17a0 (patch)
tree9de92825e4293741d7d617d40e661fb5863bb8b9 /buch/chapters/060-integral/sqrat.tex
parentMerge branch 'AndreasFMueller:master' into master (diff)
parentflow (diff)
downloadSeminarSpezielleFunktionen-3010b2b87e56a8e2fbc2476b9971d9ef886f17a0.tar.gz
SeminarSpezielleFunktionen-3010b2b87e56a8e2fbc2476b9971d9ef886f17a0.zip
Merge branch 'AndreasFMueller:master' into master
Diffstat (limited to '')
-rw-r--r--buch/chapters/060-integral/sqrat.tex480
1 files changed, 480 insertions, 0 deletions
diff --git a/buch/chapters/060-integral/sqrat.tex b/buch/chapters/060-integral/sqrat.tex
new file mode 100644
index 0000000..787cfc9
--- /dev/null
+++ b/buch/chapters/060-integral/sqrat.tex
@@ -0,0 +1,480 @@
+%
+% sqrat.tex
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue
+%
+\subsection{Integranden der Form $R(x,\sqrt{ax^2+bx+c})$
+\label{buch:integral:subsection:rxy}}
+Für rationale Funktionen lässt sich immer eine Stammfunktion in einem
+Erweiterungskörper angeben, der durch hinzufügen einzelner logarithmischer
+Funktionen entsteht.
+Die dabei verwendeten Techniken lassen sich verallgemeinern.
+Zur Illustration und Motivation des später beschriebenen Risch-Algorithmus
+stellen wir uns in diesem Abschnitt der Aufgabe, Integrale
+mit einem Integranden zu berechnen, der eine rationale Funktion von $x$
+und $\sqrt{ax^2+bx+c}$ ist.
+
+%
+% Aufgabenstellung
+%
+\subsubsection{Aufgabenstellung}
+Eine rationale Funktion von $x$ und $\sqrt{ax^2+bx+c}$ ist ein
+Element des Differentialkörpers, den man aus $\mathbb{Q}(x)$ durch
+hinzufügen des Elementes
+\[
+y=\sqrt{ax^2+bx+c}
+\]
+erhält.
+Eine Funktion $f\in\mathbb{Q}(x,y)$ kann geschrieben werden als Bruch
+\begin{equation}
+f
+=
+\frac{
+\tilde{p}_0 + \tilde{p}_1y + \dots + \tilde{p}_n y^n
+}{
+\tilde{q}_0 + \tilde{q}_1y + \dots + \tilde{q}_m y^m
+}
+\label{buch:integral:sqrat:eqn:ftilde}
+\end{equation}
+mit rationalen Koeffizienten $\tilde{p}_i,\tilde{q}_i\in\mathbb{Q}(x)$.
+Gesucht ist eine Stammfunktion von $f$.
+
+%
+% Algebraische Vereinfachungen
+%
+\subsubsection{Algebraische Vereinfachungen}
+Da $x^2=ax^2+bx+c$ ein Polynom ist, sind auch alle geraden Potenzen
+von $y$ Polynome in $\mathbb{Q}(x)$,
+und die ungeraden Potenzen von $y$ lassen sich als Produkt aus einem
+Polynom und dem Faktor $y$ schreiben.
+Der Integrand~\eqref{buch:integral:sqrat:eqn:ftilde}
+lässt sich daher vereinfachen zu einem Bruch der Form
+\begin{equation}
+f(x)
+=
+\frac{p_0+p_1y}{q_0+q_1y},
+\label{buch:integral:sqrat:eqn:moebius}
+\end{equation}
+wobei $p_i$ und $q_i$ rationale Funktionen in $\mathbb{Q}(x)$ sind.
+
+%
+% Rationalisieren
+%
+\subsubsection{Rationalisieren}
+Unschön an der Form~\eqref{buch:integral:sqrat:eqn:moebius} ist die
+Tatsache, dass $y$ sowohl im Nenner wie auch im Zähler auftreten kann.
+Da aber $y$ die quadratische Identität $y^2=ax^2+bx+c$ erfüllt,
+kann das $y$ im Nenner durch Erweitern mit $q_0-q_1y$ zum verschwinden
+gebracht werden.
+Die Rechnung ergibt
+\begin{align*}
+\frac{p_0+p_1y}{q_0+q_1y}
+&=
+\frac{p_0+p_1y}{q_0+q_1y}
+\cdot
+\frac{q_0-q_1y}{q_0-q_1y}
+=
+\frac{(p_0+p_1y)(q_0-q_1y)}{q_0^2-q_1^2y^2}
+\\
+&=
+\frac{p_0q_0-p_1q_1(ax^2+bx+c)}{q_0^2-q_1^2(ax^2+bx+c)}
++
+\frac{q_0p_1-q_1p_0}{q_0^2-q_1^2(ax^2+bx+c)} y.
+\end{align*}
+Die Quotienten enthalten $y$ nicht mehr, sind also in $\mathbb{Q}(x)$.
+In der späteren Rechnung stellt sich heraus, dass es praktischer ist,
+das $y$ im Nenner zu haben, was man durch erweitern mit $y$ wieder
+unter Ausnützung von $y^2=ax^2+bx+c$ erreichen kann.
+Die zu integrierende Funktion kann also in der Form
+\begin{equation}
+f(x)
+=
+W_1 + W_2\frac{1}{y}
+\label{buch:integral:sqint:eqn:w1w2y}
+\end{equation}
+geschrieben werden mit rationalen Funktionen
+$W_1,W_2\in\mathbb{Q}(x)$.
+Eine Stammfunktion von $W_1$ kann mit der Methode von
+Abschnitt~\ref{buch:integral:subsection:rationalefunktionen}
+gefunden werden.
+Im Folgenden kümmern wir uns daher nur noch um $W_1$.
+
+%
+% Polynomdivision
+%
+\subsubsection{Polynomdivision}
+Die Funktion $W_2$ in \eqref{buch:integral:sqint:eqn:w1w2y} ist eine
+rationale Funktion $W_2\in \mathbb{K}(x)$, also ein Bruch mit Polynomen
+in $x$ als Zähler und Nenner.
+Durch Polynomdivision mit Rest können wir $W_2$ schreiben als
+\[
+W_1 = \varphi + W_3,
+\]
+wobei $\varphi$ ein Polynom in $x$ ist und $W_3$ eine rationale
+Funktion, deren Zählergrad kleiner ist als der Nennergrad.
+Zur Bestimmung der Stammfunktion bleibt jetzt nur noch
+\begin{equation}
+\int W_2\frac{1}{y}
+=
+\int \frac{\varphi}{y}
++
+\int W_3\frac1{y}
+\label{buch:integral:sqint:eqn:Wy}
+\end{equation}
+zu berechnen.
+
+%
+% Integranden der Form $\varphi(x)/y$
+%
+\subsubsection{Integranden der Form $\varphi(x)/y$}
+Der erste Term in~\eqref{buch:integral:sqint:eqn:Wy} ist ein Integral eines
+Quotienten eines Polynoms geteilt durch $y$.
+Solche Integrale können, wie im Folgenden gezeigt werden soll, reduziert
+werden auf das Integral von $1/y$.
+Genauer gilt der folgende Satz.
+
+\begin{satz}
+\label{buch:integral:sqint:satz:polyy}
+Sei $\varphi\in\mathcal{K}(x)$ ein Polynom in $x$, dann gibt
+es ein Polynom $\psi\in\mathcal{K}(x)$ vom Grad $\deg\psi < \deg\varphi$,
+und $A\in\mathcal{K}$ derart, dass
+\begin{equation}
+\int \frac{\varphi}{y}
+=
+\psi y + A\int\frac{1}{y}.
+\label{buch:integral:sqint:eqn:phipsi}
+\end{equation}
+\end{satz}
+
+\begin{proof}[Beweis]
+Wir schreiben die Polynome in der Form
+\begin{align*}
+\varphi
+&=
+\varphi_mx^m + \varphi_{m-1}x^{m-1} + \dots + \varphi_2x^2 + \varphi_1x + \varphi_0
+\\
+\psi
+&=
+\phantom{\varphi_mx^m+\mathstrut}
+\psi_{m-1}x^{m-1} + \dots + \psi_2x^2 + \psi_1x + \psi_0
+\intertext{mit der Ableitung}
+\psi'
+&=
+\phantom{\varphi_mx^m+\mathstrut}
+\psi_{m-1}(m-1)x^{m-2} + \dots + 2\psi_2x + \psi_1.
+\end{align*}
+Wir leiten die Gleichung~\eqref{buch:integral:sqint:eqn:phipsi}
+nach $x$ ab und erhalten
+\begin{align*}
+\frac{\varphi}{y}
+&=
+\psi'y + \psi y' + \frac{A}{y}
+=
+\psi'y + \psi \frac{ax+b/2}{y} + \frac{A}{y}.
+\intertext{Durch Multiplikation mit $y$ wird die Gleichung wesentlich
+vereinfacht zu}
+\varphi
+&=
+\psi' y^2 + \psi y' y + A
+=
+\psi' \cdot(ax^2+bx+c) + \psi\cdot (ax+b/2) + A.
+\end{align*}
+Auf beiden Seiten stehen Polynome, man kann daher versuchen, die
+Koeffizienten von $\psi$ mit Hilfe eines Koeffizientenvergleichs zu
+bestimmen.
+Dazu müssen die Produkte auf der rechten Seite ausmultipliziert werden.
+So ergeben sich die Gleichungen
+\begin{equation}
+\renewcommand{\arraycolsep}{2pt}
+\begin{array}{lcrcrcrcrcrcrcr}
+\varphi_m
+&=&
+(m-1)\psi_{m-1} a &+& & &
+&+&
+\psi_{m-1} a & & & &
+\\
+\varphi_{m-1}
+&=&
+(m-2)\psi_{m-2}a
+&+&
+(m-1)\psi_{m-1}b
+& &
+&+&
+\psi_{m-2}a
+&+&
+\psi_{m-1}\frac{b}2
+& &
+\\
+\varphi_{m-2}
+&=&
+(m-3)\psi_{m-3}a
+&+&
+(m-2)\psi_{m-2}b
+&+&
+(m-1)\psi_{m-1}c
+&+&
+\psi_{m-3}a
+&+&
+\psi_{m-2}\frac{b}2
+& &
+\\
+&\vdots&&&&&&&&&&&
+\\
+\varphi_2
+&=&
+\psi_{1\phantom{-m}}a
+&+&
+2\psi_{2\phantom{-m}}b
+&+&
+3\psi_{3\phantom{-m}}c
+&+&
+\psi_{1\phantom{-m}}a
+&+&
+\psi_{2\phantom{-m}}\frac{b}2
+& &
+\\
+\varphi_1
+&=&
+& &
+\psi_{1\phantom{-m}}b
+& &
+2\psi_{2\phantom{-m}}c
+&+&
+\psi_{0\phantom{-m}}a
+&+&
+\psi_{1\phantom{-m}}\frac{b}2
+\\
+\varphi_0
+&=&
+& &
+& &
+\psi_{1\phantom{-m}}c
+& &
+&+&
+\psi_{0\phantom{-m}}\frac{b}2
+&+&A
+\end{array}
+\end{equation}
+In jeder Gleichung kommen hächstens drei der Koeffizienten von $\psi$ vor.
+Fasst man sie zusammen und stellt die Terme etwas um,
+erhält man die einfacheren Gleichungen
+\begin{equation}
+\renewcommand{\arraycolsep}{2pt}
+\renewcommand{\arraystretch}{1.3}
+\begin{array}{lcrcrcrcrcrcrcr}
+\varphi_m
+&=&
+(m-0){\color{red}\psi_{m-1}}a & & & &
+& &
+\\
+\varphi_{m-1}
+&=&
+(m-1+\frac12)\psi_{m-1}b
+&+&
+(m-1){\color{red}\psi_{m-2}}a
+& &
+& &
+\\
+\varphi_{m-2}
+&=&
+(m-1)\psi_{m-1}c
+&+&
+(m-2+\frac12)\psi_{m-2}b
+&+&
+(m-2){\color{red}\psi_{m-3}}a
+& &
+\\
+&\vdots&&&&&&&&&&&
+\\
+\varphi_2
+&=&
+3\psi_{3\phantom{-m}}c
+&+&
+(2+\frac12)\psi_{2\phantom{-m}}b
+&+&
+2{\color{red}\psi_{1\phantom{-m}}}a
+& &
+\\
+\varphi_1
+&=&
+2\psi_{2\phantom{-m}}c
+&+&
+(1+\frac12)\psi_{1\phantom{-m}}b
+&+&
+{\color{red}\psi_{0\phantom{-m}}}a
+& &
+\\
+\varphi_0
+&=&
+\psi_{1\phantom{-m}}c
+& &
+&+&
+(0+\frac12) \psi_{0\phantom{-m}}b
+&+&{\color{red}A}
+\end{array}
+\end{equation}
+Die erste Gleichung kann wegen $a\ne 0$ nach $\psi_{m-1}$ aufgelöst werden,
+dadurch ist $\psi_{m-1}$ bestimmt.
+In allen folgenden Gleichungen taucht jeweils ein neuer Koeffizient
+von $\psi$ auf, der rot hervorgehoben ist.
+Wieder wegen $a\ne 0$ kann die Gleichung immer nach dieser Variablen
+aufgelöst werden.
+Die Gleichungen zeigen daher, dass die Koeffizienten des Polynoms $\psi$
+in absteigender Folge und die Konstanten $A$ eindeutig bestimmt werden.
+\end{proof}
+
+Mit diesem Satz ist das Integral über den Teil $\varphi/y$ auf den
+Fall des Integrals von $1/y$ reduziert.
+Letzteres wird im nächsten Abschnitt berechnet.
+
+%
+% Das Integral von $1/y$
+%
+\subsubsection{Das Integral von $1/y$}
+Eine Stammfunktion von $1/y$ kann mit etwas Geschick mit den
+Interationstechniken gefunden werden, die man in einem Analysis-Kurs
+lernt.
+Durch Ableitung der Funktion
+\[
+F
+=
+\frac{1}{\sqrt{a}}\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{a}}\biggr)
+\]
+kann man nachprüfen, dass $F$ eine Stammfunktion von $1/y$ ist,
+also
+\begin{equation}
+\int
+\frac{1}{y}
+=
+\frac{1}{\sqrt{a}}\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{a}}\biggr).
+\end{equation}
+
+%
+% Partialbruchzerlegung
+%
+\subsubsection{Partialbruchzerlegung}
+In der rationalen Funktion $W_3$ in \eqref{buch:integral:sqint:eqn:Wy}
+hat der Zähler kleineren Grad als der Nenner, sie kann daher wieder
+in Partialbrüche
+\[
+W_3
+=
+\sum_{i=1}^n
+\sum_{k=1}^{k_i}
+\frac{A_{ik}}{(x-\alpha_i)^k}
+\]
+mit den Nullstellen $\alpha_i$ des Nenners von $W_3$ mit Vielfachheiten
+$k_i$ zerlegt werden.
+Die Stammfunktion von $W_3/y$ wird damit zu
+\begin{equation}
+\int W_3\frac{1}{y}
+=
+\sum_{i=1}^n
+\sum_{k=1}^{k_i}
+A_{ik}
+\int
+\frac{1}{(x-\alpha_i)^ky}
+=
+\sum_{i=1}^n
+\sum_{k=1}^{k_i}
+A_{ik}
+\int
+\frac{1}{(x-\alpha_i)^k \sqrt{ax^2+bx+c}}.
+\end{equation}
+Die Stammfunktion ist damit reduziert auf Integrale der Form
+\begin{equation}
+\int
+\frac{1}{(x-\alpha)^k \sqrt{ax^2+bx+c}}
+\label{buch:integral:sqrat:eqn:2teart}
+\end{equation}
+mit $k>0$.
+
+%
+% Integrale der Form \eqref{buch:integral:sqrat:eqn:2teart}
+%
+\subsubsection{Integrale der Form \eqref{buch:integral:sqrat:eqn:2teart}}
+Die Integrale~\eqref{buch:integral:sqrat:eqn:2teart}
+können mit Hilfe der Substution
+\[
+t=\frac{1}{x-\alpha}
+\qquad\text{oder}\qquad
+x=\frac1t+\alpha
+\]
+In ein Integral verwandelt werden, für welches bereits eine
+Berechnungsmethode entwickelt wurde.
+Dazu berechnet man
+\begin{align*}
+y^2
+&= a\biggl(\frac1t+\alpha\biggr)^2 + b\biggl(\frac1t+\alpha\biggr) + c
+\\
+&=
+a\biggl(\frac{1}{t^2}+2\frac{\alpha}{t}+\alpha^2\biggr)
++\frac{b}{t}+b\alpha+c
+=
+\frac{1}{t^2}\bigl(
+\underbrace{a+(2a\alpha+b)t+(a\alpha^2+c)t^2}_{\displaystyle=Y^2}
+\bigr)
+\intertext{und damit}
+y&=\frac{Y}{t}.
+\end{align*}
+Führt man die Substition
+$dx = -dt/t^2$ im Integral aus, erhält man
+\begin{align*}
+\int\frac{dx}{(x-\alpha)^ky}
+&=
+-
+\int
+t^k\cdot\frac{t}{Y}\frac{dt}{t^2}
+=
+-\int\frac{t^{k-1}}{Y}\,dt.
+\end{align*}
+Das letzte Integral ist wieder von der Form, die in
+Satz~\ref{buch:integral:sqint:satz:polyy} behandelt wurde.
+Insbesondere gibt es ein Polynom $\psi$ vom Grad $k-2$ und
+eine Konstante $A$ derart, dass
+\[
+\int\frac{1}{(x-\alpha)^ky}
+=
+\psi Y + A\int\frac{1}{Y}
+\]
+ist.
+Damit ist das Integral von $R(x,y)$ vollständig bestimmt.
+
+\subsubsection{Beobachtungen}
+Die eben dargestellte Berechnung des Integrals von $R(x,y)$ zeigt einige
+Gemeinsamkeiten mit der entsprechenden Rechnung für rationale
+Integranden, aber auch einige wesentliche Unterschiede.
+Wieder zeigt sich, dass Polynomdivision und Partialbruchzerlegung
+die zentralen Werkzeuge sind, mit denen der Integrand zerlegt und
+leichter integrierbare Funktionen umgeformt werden kann.
+Andererseits ist der in
+Satz~\ref{buch:integral:sqint:satz:polyy}
+zusammengefasste Schritt eine wesentliche zusätzliche Vereinfachung,
+die keine Entsprechung bei rationalen Integranden hat.
+
+Die gefunden Form der Stammfunktion hat jedoch die allgemeine
+Form
+\[
+\int R(x,y)
+=
+v_0 +
+C
+\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{a}}\biggr)
++
+\sum_{i=1}^n c_i
+\log v_i,
+\]
+die ganz der bei rationalen Integranden gefunden Form entspricht.
+Darin ist $v_0$ die Summe der angefallenen rationalen Teilintegrale,
+also $v_0\in\mathcal{K}(x,y)$.
+Die $v_i\in\mathcal{K}(x,y)$ sind die entsprechenden Logarithmusfunktionen,
+die bei der Berechnung der Integrale \eqref{buch:integral:sqrat:eqn:2teart}
+auftreten.
+Insbesondere liefert die Rechnung eine Körpererweiterung von
+$\mathcal{K}(x,y)$ um die logarithmische Funktionen
+$\log(x+b/2a+y/\!\sqrt{y})$ und $\log v_i$, in der $R(x,y)$ eine
+Stammfunktion hat.
+
+
+
+