aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/060-integral
diff options
context:
space:
mode:
authorenezerdem <105669082+enezerdem@users.noreply.github.com>2022-05-24 16:26:57 +0200
committerGitHub <noreply@github.com>2022-05-24 16:26:57 +0200
commitddc1ec96ae2acdf86dcdb2b398193d606672397f (patch)
tree5244410cad093b4558944d146be24fe42b24ecd3 /buch/chapters/060-integral
parentMerge pull request #5 from AndreasFMueller/master (diff)
parentIntegrale von R(x,y) (diff)
downloadSeminarSpezielleFunktionen-ddc1ec96ae2acdf86dcdb2b398193d606672397f.tar.gz
SeminarSpezielleFunktionen-ddc1ec96ae2acdf86dcdb2b398193d606672397f.zip
Merge pull request #6 from AndreasFMueller/master
Integrale von R(x,y)
Diffstat (limited to '')
-rw-r--r--buch/chapters/060-integral/differentialkoerper.tex12
-rw-r--r--buch/chapters/060-integral/sqrat.tex365
2 files changed, 374 insertions, 3 deletions
diff --git a/buch/chapters/060-integral/differentialkoerper.tex b/buch/chapters/060-integral/differentialkoerper.tex
index 66bb0c1..a071ae2 100644
--- a/buch/chapters/060-integral/differentialkoerper.tex
+++ b/buch/chapters/060-integral/differentialkoerper.tex
@@ -3,9 +3,19 @@
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
-\section{Differentialkörper
+\section{Differentialkörper und das Integrationsproblem
\label{buch:integrale:section:dkoerper}}
\rhead{Differentialkörper}
+Die Einführung einer neuen Funktion $\operatorname{erf}(x)$ wurde
+durch die Behauptung gerechtfertigt, dass es für den Integranden
+$e^{-x^2}$ keine Stammfunktion in geschlossener Form gäbe.
+Die Fehlerfunktion ist bei weitem nicht die einzige mit dieser
+Eigenschaft.
+Doch woher weiss man, dass es keine solche Funktion gibt, und
+was heisst überhaupt ``Stammfunktion in geschlossener Form''?
+In diesem Abschnitt wird daher ein algebraischer Rahmen entwickelt,
+in dem diese Frage sinnvoll gestellt werden kann.
+
\input{chapters/060-integral/rational.tex}
\input{chapters/060-integral/erweiterungen.tex}
\input{chapters/060-integral/diffke.tex}
diff --git a/buch/chapters/060-integral/sqrat.tex b/buch/chapters/060-integral/sqrat.tex
index 38b1504..20f1ef7 100644
--- a/buch/chapters/060-integral/sqrat.tex
+++ b/buch/chapters/060-integral/sqrat.tex
@@ -90,6 +90,7 @@ Die zu integrierende Funktion kann also in der Form
f(x)
=
W_1 + W_2\frac{1}{y}
+\label{buch:integral:sqint:eqn:w1w2y}
\end{equation}
geschrieben werden mit rationalen Funktionen
$W_1,W_2\in\mathbb{Q}(x)$.
@@ -98,20 +99,380 @@ Abschnitt~\ref{buch:integral:subsection:rationalefunktionen}
gefunden werden.
Im Folgenden kümmern wir uns daher nur noch um $W_1$.
+%
+% Polynomdivision
+%
\subsubsection{Polynomdivision}
+Die Funktion $W_2$ in \eqref{buch:integral:sqint:eqn:w1w2y} ist eine
+rationale Funktion $W_2\in \mathbb{K}(x)$, also ein Bruch mit Polynomen
+in $x$ als Zähler und Nenner.
+Durch Polynomdivision mit Rest können wir $W_2$ schreiben als
+\[
+W_1 = \varphi + W_3,
+\]
+wobei $\varphi$ ein Polynom in $x$ ist und $W_3$ eine rationale
+Funktion, deren Zählergrad kleiner ist als der Nennergrad.
+Zur Bestimmung der Stammfunktion bleibt jetzt nur noch
+\begin{equation}
+\int W_2\frac{1}{y}
+=
+\int \frac{\varphi}{y}
++
+\int W_3\frac1{y}
+\label{buch:integral:sqint:eqn:Wy}
+\end{equation}
+zu berechnen.
-\subsubsection{Integranden der Form $p(x)/y$}
+%
+% Integranden der Form $\varphi(x)/y$
+%
+\subsubsection{Integranden der Form $\varphi(x)/y$}
+Der erste Term in~\eqref{buch:integral:sqint:eqn:Wy} ist ein Integral eines
+Quotienten eines Polynoms geteilt durch $y$.
+Solche Integrale können, wie im Folgenden gezeigt werden soll, reduziert
+werden auf das Integral von $1/y$.
+Genauer gilt der folgende Satz.
-\subsubsection{Partialbruchzerlegung}
+\begin{satz}
+\label{buch:integral:sqint:satz:polyy}
+Sei $\varphi\in\mathcal{K}(x)$ ein Polynom in $x$, dann gibt
+es ein Polynom $\psi\in\mathcal{K}(x)$ vom Grad $\deg\psi < \deg\varphi$,
+und $A\in\mathcal{K}$ derart, dass
+\begin{equation}
+\int \frac{\varphi}{y}
+=
+\psi y + A\int\frac{1}{y}.
+\label{buch:integral:sqint:eqn:phipsi}
+\end{equation}
+\end{satz}
+
+\begin{proof}[Beweis]
+Wir schreiben die Polynome in der Form
+\begin{align*}
+\varphi
+&=
+\varphi_mx^m + \varphi_{m-1}x^{m-1} + \dots + \varphi_2x^2 + \varphi_1x + \varphi_0
+\\
+\psi
+&=
+\phantom{\varphi_mx^m+\mathstrut}
+\psi_{m-1}x^{m-1} + \dots + \psi_2x^2 + \psi_1x + \psi_0
+\intertext{mit der Ableitung}
+\psi'
+&=
+\phantom{\varphi_mx^m+\mathstrut}
+\psi_{m-1}(m-1)x^{m-2} + \dots + 2\psi_2x + \psi_1.
+\end{align*}
+Wir leiten die Gleichung~\eqref{buch:integral:sqint:eqn:phipsi}
+nach $x$ ab und erhalten
+\begin{align*}
+\frac{\varphi}{y}
+&=
+\psi'y + \psi y' + \frac{A}{y}
+=
+\psi'y + \psi \frac{ax+b/2}{y} + \frac{A}{y}.
+\intertext{Durch Multiplikation mit $y$ wird die Gleichung wesentlich
+vereinfacht zu}
+\varphi
+&=
+\psi' y^2 + \psi y' y + A
+=
+\psi' \cdot(ax^2+bx+c) + \psi\cdot (ax+b/2) + A.
+\end{align*}
+Auf beiden Seiten stehen Polynome, man kann daher versuchen, die
+Koeffizienten von $\psi$ mit Hilfe eines Koeffizientenvergleichs zu
+bestimmen.
+Dazu müssen die Produkte auf der rechten Seite ausmultipliziert werden.
+So ergeben sich die Gleichungen
+\begin{equation}
+\renewcommand{\arraycolsep}{2pt}
+\begin{array}{lcrcrcrcrcrcrcr}
+\varphi_m
+&=&
+(m-1)\psi_{m-1} a &+& & &
+&+&
+\psi_{m-1} a & & & &
+\\
+\varphi_{m-1}
+&=&
+(m-2)\psi_{m-2}a
+&+&
+(m-1)\psi_{m-1}b
+& &
+&+&
+\psi_{m-2}a
+&+&
+\psi_{m-1}\frac{b}2
+& &
+\\
+\varphi_{m-2}
+&=&
+(m-3)\psi_{m-3}a
+&+&
+(m-2)\psi_{m-2}b
+&+&
+(m-1)\psi_{m-1}c
+&+&
+\psi_{m-3}a
+&+&
+\psi_{m-2}\frac{b}2
+& &
+\\
+&\vdots&&&&&&&&&&&
+\\
+\varphi_2
+&=&
+\psi_{1\phantom{-m}}a
+&+&
+2\psi_{2\phantom{-m}}b
+&+&
+3\psi_{3\phantom{-m}}c
+&+&
+\psi_{1\phantom{-m}}a
+&+&
+\psi_{2\phantom{-m}}\frac{b}2
+& &
+\\
+\varphi_1
+&=&
+& &
+\psi_{1\phantom{-m}}b
+& &
+2\psi_{2\phantom{-m}}c
+&+&
+\psi_{0\phantom{-m}}a
+&+&
+\psi_{1\phantom{-m}}\frac{b}2
+\\
+\varphi_0
+&=&
+& &
+& &
+\psi_{1\phantom{-m}}c
+& &
+&+&
+\psi_{0\phantom{-m}}\frac{b}2
+&+&A
+\end{array}
+\end{equation}
+In jeder Gleichung kommen hächstens drei der Koeffizienten von $\psi$ vor.
+Fasst man sie zusammen und stellt die Terme etwas um,
+erhält man die einfacheren Gleichungen
+\begin{equation}
+\renewcommand{\arraycolsep}{2pt}
+\renewcommand{\arraystretch}{1.3}
+\begin{array}{lcrcrcrcrcrcrcr}
+\varphi_m
+&=&
+(m-0){\color{red}\psi_{m-1}}a & & & &
+& &
+\\
+\varphi_{m-1}
+&=&
+(m-1+\frac12)\psi_{m-1}b
+&+&
+(m-1){\color{red}\psi_{m-2}}a
+& &
+& &
+\\
+\varphi_{m-2}
+&=&
+(m-1)\psi_{m-1}c
+&+&
+(m-2+\frac12)\psi_{m-2}b
+&+&
+(m-2){\color{red}\psi_{m-3}}a
+& &
+\\
+&\vdots&&&&&&&&&&&
+\\
+\varphi_2
+&=&
+3\psi_{3\phantom{-m}}c
+&+&
+(2+\frac12)\psi_{2\phantom{-m}}b
+&+&
+2{\color{red}\psi_{1\phantom{-m}}}a
+& &
+\\
+\varphi_1
+&=&
+2\psi_{2\phantom{-m}}c
+&+&
+(1+\frac12)\psi_{1\phantom{-m}}b
+&+&
+{\color{red}\psi_{0\phantom{-m}}}a
+& &
+\\
+\varphi_0
+&=&
+\psi_{1\phantom{-m}}c
+& &
+&+&
+(0+\frac12) \psi_{0\phantom{-m}}b
+&+&{\color{red}A}
+\end{array}
+\end{equation}
+Die erste Gleichung kann wegen $a\ne 0$ nach $\psi_{m-1}$ aufgelöst werden,
+dadurch ist $\psi_{m-1}$ bestimmt.
+In allen folgenden Gleichungen taucht jeweils ein neuer Koeffizient
+von $\psi$ auf, der rot hervorgehoben ist.
+Wieder wegen $a\ne 0$ kann die Gleichung immer nach dieser Variablen
+aufgelöst werden.
+Die Gleichungen zeigen daher, dass die Koeffizienten des Polynoms $\psi$
+in absteigender Folge und die Konstanten $A$ eindeutig bestimmt werden.
+\end{proof}
+
+Mit diesem Satz ist das Integral über den Teil $\varphi/y$ auf den
+Fall des Integrals von $1/y$ reduziert.
+Letzteres wird im nächsten Abschnitt berechnet.
+%
+% Das Integral von $1/y$
+%
+\subsubsection{Das Integral von $1/y$}
+Eine Stammfunktion von $1/y$ kann mit etwas Geschick bekannten
+Interationstechnikgen gefunden werden.
+Durch Ableitung der Funktion
+\[
+F
+=
+\frac{1}{\sqrt{a}}\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{y}}\biggr)
+\]
+kann man nachprüfen, dass $F$ eine Stammfunktion von $1/y$ ist,
+also
+\begin{equation}
+\int
+\frac{1}{y}
+=
+\frac{1}{\sqrt{a}}\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{y}}\biggr).
+\end{equation}
+
+%
+% Partialbruchzerlegung
+%
+\subsubsection{Partialbruchzerlegung}
+In der rationalen Funktion $W_3$ in \eqref{buch:integral:sqint:eqn:Wy}
+hat der Zähler kleineren Grad als der Nenner, sie kann daher wieder
+in Partialbrüche
+\[
+W_3
+=
+\sum_{i=1}^n
+\sum_{k=1}^{k_i}
+\frac{A_{ik}}{(x-\alpha_i)^k}
+\]
+mit den Nullstellen $\alpha_i$ des Nenners von $W_3$ mit Vielfachheiten
+$k_i$ zerlegt werden.
+Die Stammfunktion von $W_3/y$ wird damit zu
+\begin{equation}
+\int W_3\frac{1}{y}
+=
+\sum_{i=1}^n
+\sum_{k=1}^{k_i}
+A_{ik}
+\int
+\frac{1}{(x-\alpha_i)^ky}
+=
+\sum_{i=1}^n
+\sum_{k=1}^{k_i}
+A_{ik}
+\int
+\frac{1}{(x-\alpha_i)^k \sqrt{ax^2+bx+c}}.
+\end{equation}
+Die Stammfunktion ist damit reduziert auf Integrale der Form
\begin{equation}
\int
\frac{1}{(x-\alpha)^k \sqrt{ax^2+bx+c}}
\label{buch:integral:sqrat:eqn:2teart}
\end{equation}
+mit $k>0$.
+%
+% Integrale der Form \eqref{buch:integral:sqrat:eqn:2teart}
+%
\subsubsection{Integrale der Form \eqref{buch:integral:sqrat:eqn:2teart}}
+Die Integrale~\eqref{buch:integral:sqrat:eqn:2teart}
+können mit Hilfe der Substution
+\[
+t=\frac{1}{x-\alpha}
+\qquad\text{oder}\qquad
+x=\frac1t+\alpha
+\]
+In ein Integral verwandelt werden, für welches bereits eine
+Berechnungsmethode entwickelt wurde.
+Dazu berechnet man
+\begin{align*}
+y^2
+&= a\biggl(\frac1t+\alpha\biggr)^2 + b\biggl(\frac1t+\alpha\biggr) + c
+\\
+&=
+a\biggl(\frac{1}{t^2}+2\frac{\alpha}{t}+\alpha^2\biggr)
++\frac{b}{t}+b\alpha+c
+=
+\frac{1}{t^2}\bigl(
+\underbrace{a+(2a\alpha+b)t+(a\alpha^2+c)t^2}_{\displaystyle=Y^2}
+\bigr)
+\intertext{und damit}
+y&=\frac{Y}{t}.
+\end{align*}
+Führt man die Substition
+$dx = -dt/t^2$ im Integral aus, erhält man
+\begin{align*}
+\int\frac{dx}{(x-\alpha)^ky}
+&=
+-
+\int
+t^k\cdot\frac{t}{Y}\frac{dt}{t^2}
+=
+-\int\frac{t^{k-1}}{Y}\,dt.
+\end{align*}
+Das letzte Integral ist wieder von der Form, die in
+Satz~\ref{buch:integral:sqint:satz:polyy} behandelt wurde.
+Insbesondere gibt es ein Polynom $\psi$ vom Grad $k-2$ und
+eine Konstante $A$ derart, dass
+\[
+\int\frac{1}{(x-\alpha)^ky}
+=
+\psi Y + A\int\frac{1}{Y}
+\]
+ist.
+Damit ist das Integral von $R(x,y)$ vollständig bestimmt.
+\subsubsection{Beobachtungen}
+Die eben dargestellte Berechnung des Integrals von $R(x,y)$ zeigt einige
+Gemeinsamkeiten mit der entsprechenden Rechnung für rationale
+Integranden, aber auch einige wesentliche Unterschiede.
+Wieder zeigt sich, dass Polynomdivision und Partialbruchzerlegung
+die zentralen Werkzeuge sind, mit denen der Integrand zerlegt und
+leichter integrierbare Funktionen umgeformt werden kann.
+Andererseits ist der in
+Satz~\ref{buch:integral:sqint:satz:polyy}
+zusammengefasste Schritt eine wesentliche zusätzliche Vereinfachung,
+die keine Entsprechung bei rationalen Integranden hat.
+
+Die gefunden Form der Stammfunktion hat jedoch die allgemeine
+Form
+\[
+\int R(x,y)
+=
+v_0 +
+C
+\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{y}}\biggr)
++
+\sum_{i=1}^n c_i
+\log v_i,
+\]
+die ganz der bei rationalen Integranden gefunden Form entspricht.
+Darin ist $v_0$ die Summe der angefallenen rationalen Teilintegrale,
+also $v_0\in\mathcal{K}(x,y)$.
+Die $v_i\in\mathcal{K}(x,y)$ sind die entsprechenden Logarithmusfunktionen,
+die bei der Berechnung der Integrale \eqref{buch:integral:sqrat:eqn:2teart}
+auftreten.
+Insbesondere liefert die Rechnung eine Körpererweiterung von
+$\mathcal{K}(x,y)$ um die logarithmische Funktionen
+$\log(x+b/2a+y/\sqrt{y})$ und $\log v_i$, in der $R(x,y)$ eine
+Stammfunktion hat.