aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/070-orthogonalitaet
diff options
context:
space:
mode:
authorNicolas Tobler <nicolas.tobler@ost.ch>2022-05-30 00:06:46 +0200
committerNicolas Tobler <nicolas.tobler@ost.ch>2022-05-30 00:06:46 +0200
commit65a3fc106c36dfd1750f8caf8b3d1b5fb0fe71f9 (patch)
tree30791dc17973690a6d761589de357c452ba9fa29 /buch/chapters/070-orthogonalitaet
parentAdded content, presentation (diff)
parentbeispiel korrektur (diff)
downloadSeminarSpezielleFunktionen-65a3fc106c36dfd1750f8caf8b3d1b5fb0fe71f9.tar.gz
SeminarSpezielleFunktionen-65a3fc106c36dfd1750f8caf8b3d1b5fb0fe71f9.zip
Merge branch 'master' of https://github.com/AndreasFMueller/SeminarSpezielleFunktionen
Diffstat (limited to '')
-rw-r--r--buch/chapters/070-orthogonalitaet/Makefile.inc3
-rw-r--r--buch/chapters/070-orthogonalitaet/chapter.tex2
-rw-r--r--buch/chapters/070-orthogonalitaet/gaussquadratur.tex16
-rw-r--r--buch/chapters/070-orthogonalitaet/jacobi.tex22
-rw-r--r--buch/chapters/070-orthogonalitaet/orthogonal.tex55
-rw-r--r--buch/chapters/070-orthogonalitaet/rekursion.tex10
-rw-r--r--buch/chapters/070-orthogonalitaet/sturm.tex2
-rw-r--r--buch/chapters/070-orthogonalitaet/uebungsaufgaben/701.tex137
8 files changed, 230 insertions, 17 deletions
diff --git a/buch/chapters/070-orthogonalitaet/Makefile.inc b/buch/chapters/070-orthogonalitaet/Makefile.inc
index 48e5356..8f58489 100644
--- a/buch/chapters/070-orthogonalitaet/Makefile.inc
+++ b/buch/chapters/070-orthogonalitaet/Makefile.inc
@@ -4,7 +4,7 @@
# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-CHAPTERFILES = $(CHAPTERFILES) \
+CHAPTERFILES += \
chapters/070-orthogonalitaet/orthogonal.tex \
chapters/070-orthogonalitaet/rekursion.tex \
chapters/070-orthogonalitaet/rodrigues.tex \
@@ -13,4 +13,5 @@ CHAPTERFILES = $(CHAPTERFILES) \
chapters/070-orthogonalitaet/jacobi.tex \
chapters/070-orthogonalitaet/sturm.tex \
chapters/070-orthogonalitaet/gaussquadratur.tex \
+ chapters/070-orthogonalitaet/uebungsaufgaben/701.tex \
chapters/070-orthogonalitaet/chapter.tex
diff --git a/buch/chapters/070-orthogonalitaet/chapter.tex b/buch/chapters/070-orthogonalitaet/chapter.tex
index 5ebb795..4756844 100644
--- a/buch/chapters/070-orthogonalitaet/chapter.tex
+++ b/buch/chapters/070-orthogonalitaet/chapter.tex
@@ -25,7 +25,7 @@
\rhead{Übungsaufgaben}
\aufgabetoplevel{chapters/070-orthogonalitaet/uebungsaufgaben}
\begin{uebungsaufgaben}
-%\uebungsaufgabe{0}
+\uebungsaufgabe{701}
%\uebungsaufgabe{1}
\end{uebungsaufgaben}
diff --git a/buch/chapters/070-orthogonalitaet/gaussquadratur.tex b/buch/chapters/070-orthogonalitaet/gaussquadratur.tex
index 55f9700..2e43cec 100644
--- a/buch/chapters/070-orthogonalitaet/gaussquadratur.tex
+++ b/buch/chapters/070-orthogonalitaet/gaussquadratur.tex
@@ -135,12 +135,12 @@ p(x)&=x^2\colon& \frac23 &= A_0x_0^2 + A_1x_1^2\\
p(x)&=x^3\colon& 0 &= A_0x_0^3 + A_1x_1^3.
\end{aligned}
\]
-Dividiert man die zweite und vierte Gleichung in der Form
+Dividiert man die vierte durch die zweite Gleichung in der Form
\[
\left.
\begin{aligned}
-A_0x_0 &= -A_1x_1\\
-A_0x_0^2 &= -A_1x_1^2
+A_0x_0^3 &= -A_1x_1^3 &\qquad&\text{(vierte Gleichung)}\\
+A_0x_0 &= -A_1x_1 &\qquad&\text{(zweite Gleichung)}
\end{aligned}
\quad
\right\}
@@ -155,7 +155,7 @@ x_1=-x_0.
\]
Indem wir dies in die zweite Gleichung einsetzen, finden wir
\[
-0 = A_0x_0 + A_1x_1 = A_0x_1 -A_1x_0 = (A_0-A_1)x_0
+0 = A_0x_0 + A_1x_1 = A_0x_0 -A_1x_0 = (A_0-A_1)x_0
\quad\Rightarrow\quad
A_0=A_1.
\]
@@ -263,7 +263,7 @@ werden können, muss auch
=
\int_{-1}^1 q(x)p(x)\,dx
=
-\sum_{i=0}^n q(x_i)p(x_i)
+\sum_{i=0}^n A_iq(x_i)p(x_i)
\]
für jedes beliebige Polynom $q\in R_{n-1}$ gelten.
Da man für $q$ die Interpolationspolynome $l_j(x)$ verwenden
@@ -272,9 +272,11 @@ kann, den Grad $n-1$ haben, folgt
0
=
\sum_{i=0}^n
-l_j(x_i)p(x_i)
+A_il_j(x_i)p(x_i)
=
-\sum_{i=0}^n \delta_{ij}p(x_i),
+\sum_{i=0}^n A_i\delta_{ij}p(x_i)
+=
+A_jp(x_j),
\]
die Stützstellen $x_i$ müssen also die Nullstellen des Polynoms
$p(x)$ sein.
diff --git a/buch/chapters/070-orthogonalitaet/jacobi.tex b/buch/chapters/070-orthogonalitaet/jacobi.tex
index 042d466..f776c03 100644
--- a/buch/chapters/070-orthogonalitaet/jacobi.tex
+++ b/buch/chapters/070-orthogonalitaet/jacobi.tex
@@ -189,6 +189,28 @@ rechten Rand haben.
\label{buch:orthogonal:fig:jacobi-parameter}}
\end{figure}
+\subsection{Jacobi-Gewichtsfunktion und Beta-Verteilung
+\label{buch:orthogonal:subsection:beta-verteilung}}
+Die Jacobi-Gewichtsfunktion entsteht aus der Wahrscheinlichkeitsdichte
+der Beta-Verteilung, die in
+Abschnitt~\ref{buch:rekursion:subsection:beta-verteilung}
+eingeführt wurde mit Hilfe der Variablen-Transformation $x = 2t-1$
+oder $t=(x+1)/2$.
+Das Integral mit der Jacobi-Gewichtsfunktion $w^{(\alpha,\beta)}(x)$
+kann damit umgeformt werden in
+\[
+\int_{-1}^1
+f(x)\,w^{(\alpha,\beta)}(x)\,dx
+=
+\int_0^1
+f(2t-1) w^{(\alpha,\beta)}(2t-1)\,2\,dt
+=
+\int_0^1
+f(2t-1)
+(1-(2t-1))^\alpha (1+(2t-1))^\beta
+\,2\,dt
+\]
+
%
%
%
diff --git a/buch/chapters/070-orthogonalitaet/orthogonal.tex b/buch/chapters/070-orthogonalitaet/orthogonal.tex
index d06f46e..677e865 100644
--- a/buch/chapters/070-orthogonalitaet/orthogonal.tex
+++ b/buch/chapters/070-orthogonalitaet/orthogonal.tex
@@ -737,6 +737,57 @@ rechten Rand haben.
\label{buch:orthogonal:fig:jacobi-parameter}}
\end{figure}
+\subsubsection{Jacobi-Gewichtsfunktion und Beta-Verteilung
+\label{buch:orthogonal:subsection:beta-verteilung}}
+Die Jacobi-Gewichtsfunktion entsteht aus der Wahrscheinlichkeitsdichte
+der Beta-Verteilung, die in
+Abschnitt~\ref{buch:rekursion:subsection:beta-verteilung}
+eingeführt wurde mit Hilfe der Variablen-Transformation $x = 2t-1$
+oder $t=(x+1)/2$.
+Das Integral mit der Jacobi-Gewichtsfunktion $w^{(\alpha,\beta)}(x)$
+kann damit umgeformt werden in
+\begin{align*}
+\int_{-1}^1
+f(x)\,w^{(\alpha,\beta)}(x)\,dx
+&=
+\int_0^1
+f(2t-1) w^{(\alpha,\beta)}(2t-1)\,2\,dt
+\\
+&=
+\int_0^1
+f(2t-1)
+(1-(2t-1))^\alpha (1+(2t-1))^\beta
+\,2\,dt
+\\
+&=
+2^{\alpha+\beta+1}
+\int_0^1
+f(2t-1)
+\,
+t^\beta
+(1-t)^\alpha
+\,dt
+\\
+&=
+2^{\alpha+\beta+1}
+B(\alpha+1,\beta+1)
+\int_0^1
+f(2t-1)
+\,
+\frac{
+t^\beta
+(1-t)^\alpha
+}{B(\alpha+1,\beta+1)}
+\,dt.
+\end{align*}
+Auf der letzten Zeile steht ein Integral mit der Wahrscheinlichkeitsdichte
+der Beta-Verteilung.
+Orthogonale Funktionen bezüglich der Jacobischen Gewichtsfunktion
+$w^{(\alpha,\beta)}$ werden mit der genannten Substitution also
+zu orthogonalen Funktionen bezüglich der Beta-Verteilung mit
+Parametern $\beta+1$ und $\alpha+1$.
+
+
%
% Tschebyscheff-Gewichtsfunktion
%
@@ -791,14 +842,14 @@ bei geeigneter Normierung die {\em Hermite-Polynome}.
%
% Laguerre-Gewichtsfunktion
%
-\subsection{Laguerre-Gewichtsfunktion}
+\subsubsection{Laguerre-Gewichtsfunktion}
Ähnlich wie die Hermite-Gewichtsfunktion ist die
{\em Laguerre-Gewichtsfunktion}
\index{Laguerre-Gewichtsfunktion}%
\[
w_{\text{Laguerre}}(x)
=
-w^{-x}
+e^{-x}
\]
auf ganz $\mathbb{R}$ definiert, und sie geht für $x\to\infty$ wieder
sehr rasch gegen $0$.
diff --git a/buch/chapters/070-orthogonalitaet/rekursion.tex b/buch/chapters/070-orthogonalitaet/rekursion.tex
index 5ec7fed..dc5531b 100644
--- a/buch/chapters/070-orthogonalitaet/rekursion.tex
+++ b/buch/chapters/070-orthogonalitaet/rekursion.tex
@@ -30,7 +30,7 @@ Skalarproduktes $\langle\,\;,\;\rangle_w$, wenn
für alle $n$, $m$.
\end{definition}
-\subsection{Allgemeine Drei-Term-Rekursion für orthogonale Polynome}
+\subsubsection{Allgemeine Drei-Term-Rekursion für orthogonale Polynome}
Der folgende Satz besagt, dass $p_n$ eine Rekursionsbeziehung erfüllt.
\begin{satz}
@@ -55,7 +55,7 @@ C_{n+1} = \frac{A_{n+1}}{A_n}\frac{h_{n+1}}{h_n}.
\end{equation}
\end{satz}
-\subsection{Multiplikationsoperator mit $x$}
+\subsubsection{Multiplikationsoperator mit $x$}
Man kann die Relation auch nach dem Produkt $xp_n(x)$ auflösen, dann
wird sie
\begin{equation}
@@ -72,7 +72,7 @@ Die Multiplikation mit $x$ ist eine lineare Abbildung im Raum der Funktionen.
Die Relation~\eqref{buch:orthogonal:eqn:multixrelation} besagt, dass diese
Abbildung in der Basis der Polynome $p_k$ tridiagonale Form hat.
-\subsection{Drei-Term-Rekursion für die Tschebyscheff-Polynome}
+\subsubsection{Drei-Term-Rekursion für die Tschebyscheff-Polynome}
Eine Relation der Form~\eqref{buch:orthogonal:eqn:multixrelation}
wurde bereits in
Abschnitt~\ref{buch:potenzen:tschebyscheff:rekursionsbeziehungen}
@@ -80,12 +80,12 @@ hergeleitet.
In der Form~\eqref{buch:orthogonal:eqn:rekursion} geschrieben lautet
sie
\[
-T_{n+1}(x) = 2x\,T_n(x)-T_{n-1}(x).
+T_{n+1}(x) = 2x\,T_n(x)-T_{n-1}(x),
\]
also
$A_n=2$, $B_n=0$ und $C_n=1$.
-\subsection{Beweis von Satz~\ref{buch:orthogonal:satz:drei-term-rekursion}}
+\subsubsection{Beweis von Satz~\ref{buch:orthogonal:satz:drei-term-rekursion}}
Die Relation~\eqref{buch:orthogonal:eqn:multixrelation} zeigt auch,
dass der Beweis die Koeffizienten $\langle xp_k,p_j\rangle_w$
berechnen muss.
diff --git a/buch/chapters/070-orthogonalitaet/sturm.tex b/buch/chapters/070-orthogonalitaet/sturm.tex
index c9c9cc6..35054ab 100644
--- a/buch/chapters/070-orthogonalitaet/sturm.tex
+++ b/buch/chapters/070-orthogonalitaet/sturm.tex
@@ -375,7 +375,7 @@ automatisch für diese Funktionenfamilien.
\subsubsection{Trigonometrische Funktionen}
Die trigonometrischen Funktionen sind Eigenfunktionen des Operators
$d^2/dx^2$, also eines Sturm-Liouville-Operators mit $p(x)=1$, $q(x)=0$
-und $w(x)=0$.
+und $w(x)=1$.
Auf dem Intervall $(-\pi,\pi)$ können wir die Randbedingungen
\bgroup
\renewcommand{\arraycolsep}{2pt}
diff --git a/buch/chapters/070-orthogonalitaet/uebungsaufgaben/701.tex b/buch/chapters/070-orthogonalitaet/uebungsaufgaben/701.tex
new file mode 100644
index 0000000..dad489f
--- /dev/null
+++ b/buch/chapters/070-orthogonalitaet/uebungsaufgaben/701.tex
@@ -0,0 +1,137 @@
+Für Funktionen auf dem Interval $(-\frac{\pi}2,\frac{\pi}2)$ ist
+\[
+\langle f,g\rangle
+=
+\frac12\int_{-\frac{\pi}2}^{\frac{\pi}2} f(x)g(x)\cos x\,dx
+\]
+ein Skalarprodukt.
+Bestimmen Sie bezüglich dieses Skalarproduktes orthogonale Polynome
+bis zum Grad $2$.
+
+\begin{hinweis}
+Verwenden Sie
+\begin{align*}
+\int_{-\frac{\pi}2}^{\frac{\pi}2} 1\cos x\,dx
+&=
+1,
+&
+\int_{-\frac{\pi}2}^{\frac{\pi}2} x^2\cos x\,dx
+&=
+\frac{\pi^2-8}{2},
+&
+\int_{-\frac{\pi}2}^{\frac{\pi}2} x^4\cos x\,dx
+&=
+\frac{\pi^4-48\pi^2+384}{8}.
+\end{align*}
+\end{hinweis}
+
+\begin{loesung}
+Wir müssen den Gram-Schmidt-Orthogonalisierungsprozess für die
+Polynome $f_0(x)=1$, $f_1(x)=x$ und $f_2(x)=x^2$ durchführen.
+Zunächst halten wir fest, dass
+\[
+\langle f_0,f_0\rangle
+=
+\frac12
+\int_{-\frac{\pi}2}^{\frac{\pi}2} \cos x\,dx
+=
+1,
+\]
+das Polynom $g_0(x)=f_0(x)$ ist hat also Norm $1$.
+
+Ein dazu orthogonales Polynom ist
+\(
+f_1(x) - \langle g_0,f_1\rangle g_0(x),
+\)
+wir müssen also das Skalarprodukt
+\[
+\langle g_0,f_1\rangle
+=
+\frac{1}{2}
+\int_{-\frac{\pi}2}^{\frac{\pi}2}
+x\cos x\,dx
+\]
+bestimmen.
+Es verschwindet, weil die Funktion $x\cos x$ ungerade ist.
+Somit ist die Funktion $f_1(x)=x$ orthogonal zu $f_0(x)=1$, um sie auch zu
+normieren berechnen wir das Integral
+\[
+\| f_1\|^2
+=
+\frac12\int_{-\frac{\pi}2}^{\frac{\pi}2} x^2\cos x\,dx
+=
+\frac{\pi^2-8}{4},
+\]
+und
+\[
+g_1(x)
+=
+\frac{2}{\sqrt{\pi^2-8}} x.
+\]
+
+Zur Berechnung von $g_2$ müssen wir die Skalarprodukte
+\begin{align*}
+\langle g_0,f_2\rangle
+&=
+\frac{1}{2}
+\int_{-\frac{\pi}2}^{\frac{\pi}2}
+x^2
+\cos x
+\,dx
+=
+\frac{\pi^2-8}{4}
+\\
+\langle g_1,f_2\rangle
+&=
+\frac{1}{2}
+\int_{-\frac{\pi}2}^{\frac{\pi}2}
+\frac{2}{\sqrt{\pi^2-8}}
+x
+\cdot x^2
+\cos x
+\,dx
+=
+0
+\end{align*}
+bestimmen.
+Damit wird das dritte Polynom
+\[
+f_2(x)
+- g_0(x)\langle g_0,f_2\rangle
+- g_1(x)\langle g_1,f_2\rangle
+=
+x^2 - \frac{\pi^2-8}{4},
+\]
+welches bereits orthogonal ist zu $g_0$ und $g_1$.
+Wir können auch noch erreichen, obwohl das nicht verlangt war,
+dass es normiert ist, indem wir die Norm berechnen:
+\[
+\left\| x^2-\frac{\pi^2-8}{4} \right\|^2
+=
+\frac12
+\int_{-\frac{\pi}2}^{\frac{\pi}2}
+\biggl(x^2-\frac{\pi^2-8}{4}\biggr)^2
+\cos x\,dx
+=
+20-2\pi^2
+\]
+woraus sich
+\[
+g_2(x)
+=
+\frac{1}{\sqrt{20-2\pi^2}}
+\biggl(
+x^2 - \frac{\pi^2-8}{4}
+\biggr).
+\]
+Damit haben wir die ersten drei bezüglich des obigen Skalarproduktes
+orthogonalen Polynome
+\begin{align*}
+g_0(x)&=1,
+&
+g_1(x)&=\frac{2x}{\sqrt{\pi^2-8}},
+&
+g_2(x)&=\frac{1}{\sqrt{20-2\pi^2}}\biggl(x^2-\frac{\pi^2-8}{4}\biggr)
+\end{align*}
+gefunden.
+\end{loesung}