diff options
author | Yanik Kuster <yanik.kuster@ost.ch> | 2022-04-06 11:24:10 +0200 |
---|---|---|
committer | Yanik Kuster <yanik.kuster@ost.ch> | 2022-04-06 11:24:10 +0200 |
commit | bf8e9cbcb82af445a28a05e4fbac02451d172365 (patch) | |
tree | 3a347b5ea7e31a9b204a27e7a24b4330106bb87a /buch/chapters/070-orthogonalitaet | |
parent | added a picture to visualize example problem (diff) | |
parent | add missing exercise (diff) | |
download | SeminarSpezielleFunktionen-bf8e9cbcb82af445a28a05e4fbac02451d172365.tar.gz SeminarSpezielleFunktionen-bf8e9cbcb82af445a28a05e4fbac02451d172365.zip |
Merge branch 'master' of https://github.com/daHugen/SeminarSpezielleFunktionen
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/070-orthogonalitaet/Makefile.inc | 1 | ||||
-rw-r--r-- | buch/chapters/070-orthogonalitaet/chapter.tex | 2 | ||||
-rw-r--r-- | buch/chapters/070-orthogonalitaet/gaussquadratur.tex | 8 | ||||
-rw-r--r-- | buch/chapters/070-orthogonalitaet/jacobi.tex | 22 | ||||
-rw-r--r-- | buch/chapters/070-orthogonalitaet/orthogonal.tex | 51 | ||||
-rw-r--r-- | buch/chapters/070-orthogonalitaet/uebungsaufgaben/701.tex | 137 |
6 files changed, 216 insertions, 5 deletions
diff --git a/buch/chapters/070-orthogonalitaet/Makefile.inc b/buch/chapters/070-orthogonalitaet/Makefile.inc index 48e5356..286ab2e 100644 --- a/buch/chapters/070-orthogonalitaet/Makefile.inc +++ b/buch/chapters/070-orthogonalitaet/Makefile.inc @@ -13,4 +13,5 @@ CHAPTERFILES = $(CHAPTERFILES) \ chapters/070-orthogonalitaet/jacobi.tex \ chapters/070-orthogonalitaet/sturm.tex \ chapters/070-orthogonalitaet/gaussquadratur.tex \ + chapters/070-orthogonalitaet/uebungsaufgaben/701.tex \ chapters/070-orthogonalitaet/chapter.tex diff --git a/buch/chapters/070-orthogonalitaet/chapter.tex b/buch/chapters/070-orthogonalitaet/chapter.tex index 5ebb795..4756844 100644 --- a/buch/chapters/070-orthogonalitaet/chapter.tex +++ b/buch/chapters/070-orthogonalitaet/chapter.tex @@ -25,7 +25,7 @@ \rhead{Übungsaufgaben} \aufgabetoplevel{chapters/070-orthogonalitaet/uebungsaufgaben} \begin{uebungsaufgaben} -%\uebungsaufgabe{0} +\uebungsaufgabe{701} %\uebungsaufgabe{1} \end{uebungsaufgaben} diff --git a/buch/chapters/070-orthogonalitaet/gaussquadratur.tex b/buch/chapters/070-orthogonalitaet/gaussquadratur.tex index 55f9700..acfdb1a 100644 --- a/buch/chapters/070-orthogonalitaet/gaussquadratur.tex +++ b/buch/chapters/070-orthogonalitaet/gaussquadratur.tex @@ -135,12 +135,12 @@ p(x)&=x^2\colon& \frac23 &= A_0x_0^2 + A_1x_1^2\\ p(x)&=x^3\colon& 0 &= A_0x_0^3 + A_1x_1^3. \end{aligned} \] -Dividiert man die zweite und vierte Gleichung in der Form +Dividiert man die vierte durch die zweite Gleichung in der Form \[ \left. \begin{aligned} -A_0x_0 &= -A_1x_1\\ -A_0x_0^2 &= -A_1x_1^2 +A_0x_0^3 &= -A_1x_1^3 &\qquad&\text{(vierte Gleichung)}\\ +A_0x_0 &= -A_1x_1 &\qquad&\text{(zweite Gleichung)} \end{aligned} \quad \right\} @@ -155,7 +155,7 @@ x_1=-x_0. \] Indem wir dies in die zweite Gleichung einsetzen, finden wir \[ -0 = A_0x_0 + A_1x_1 = A_0x_1 -A_1x_0 = (A_0-A_1)x_0 +0 = A_0x_0 + A_1x_1 = A_0x_0 -A_1x_0 = (A_0-A_1)x_0 \quad\Rightarrow\quad A_0=A_1. \] diff --git a/buch/chapters/070-orthogonalitaet/jacobi.tex b/buch/chapters/070-orthogonalitaet/jacobi.tex index 042d466..f776c03 100644 --- a/buch/chapters/070-orthogonalitaet/jacobi.tex +++ b/buch/chapters/070-orthogonalitaet/jacobi.tex @@ -189,6 +189,28 @@ rechten Rand haben. \label{buch:orthogonal:fig:jacobi-parameter}} \end{figure} +\subsection{Jacobi-Gewichtsfunktion und Beta-Verteilung +\label{buch:orthogonal:subsection:beta-verteilung}} +Die Jacobi-Gewichtsfunktion entsteht aus der Wahrscheinlichkeitsdichte +der Beta-Verteilung, die in +Abschnitt~\ref{buch:rekursion:subsection:beta-verteilung} +eingeführt wurde mit Hilfe der Variablen-Transformation $x = 2t-1$ +oder $t=(x+1)/2$. +Das Integral mit der Jacobi-Gewichtsfunktion $w^{(\alpha,\beta)}(x)$ +kann damit umgeformt werden in +\[ +\int_{-1}^1 +f(x)\,w^{(\alpha,\beta)}(x)\,dx += +\int_0^1 +f(2t-1) w^{(\alpha,\beta)}(2t-1)\,2\,dt += +\int_0^1 +f(2t-1) +(1-(2t-1))^\alpha (1+(2t-1))^\beta +\,2\,dt +\] + % % % diff --git a/buch/chapters/070-orthogonalitaet/orthogonal.tex b/buch/chapters/070-orthogonalitaet/orthogonal.tex index d06f46e..a84248a 100644 --- a/buch/chapters/070-orthogonalitaet/orthogonal.tex +++ b/buch/chapters/070-orthogonalitaet/orthogonal.tex @@ -737,6 +737,57 @@ rechten Rand haben. \label{buch:orthogonal:fig:jacobi-parameter}} \end{figure} +\subsubsection{Jacobi-Gewichtsfunktion und Beta-Verteilung +\label{buch:orthogonal:subsection:beta-verteilung}} +Die Jacobi-Gewichtsfunktion entsteht aus der Wahrscheinlichkeitsdichte +der Beta-Verteilung, die in +Abschnitt~\ref{buch:rekursion:subsection:beta-verteilung} +eingeführt wurde mit Hilfe der Variablen-Transformation $x = 2t-1$ +oder $t=(x+1)/2$. +Das Integral mit der Jacobi-Gewichtsfunktion $w^{(\alpha,\beta)}(x)$ +kann damit umgeformt werden in +\begin{align*} +\int_{-1}^1 +f(x)\,w^{(\alpha,\beta)}(x)\,dx +&= +\int_0^1 +f(2t-1) w^{(\alpha,\beta)}(2t-1)\,2\,dt +\\ +&= +\int_0^1 +f(2t-1) +(1-(2t-1))^\alpha (1+(2t-1))^\beta +\,2\,dt +\\ +&= +2^{\alpha+\beta+1} +\int_0^1 +f(2t-1) +\, +t^\beta +(1-t)^\alpha +\,dt +\\ +&= +2^{\alpha+\beta+1} +B(\alpha+1,\beta+1) +\int_0^1 +f(2t-1) +\, +\frac{ +t^\beta +(1-t)^\alpha +}{B(\alpha+1,\beta+1)} +\,dt. +\end{align*} +Auf der letzten Zeile steht ein Integral mit der Wahrscheinlichkeitsdichte +der Beta-Verteilung. +Orthogonale Funktionen bezüglich der Jacobischen Gewichtsfunktion +$w^{(\alpha,\beta)}$ werden mit der genannten Substitution also +zu orthogonalen Funktionen bezüglich der Beta-Verteilung mit +Parametern $\beta+1$ und $\alpha+1$. + + % % Tschebyscheff-Gewichtsfunktion % diff --git a/buch/chapters/070-orthogonalitaet/uebungsaufgaben/701.tex b/buch/chapters/070-orthogonalitaet/uebungsaufgaben/701.tex new file mode 100644 index 0000000..dad489f --- /dev/null +++ b/buch/chapters/070-orthogonalitaet/uebungsaufgaben/701.tex @@ -0,0 +1,137 @@ +Für Funktionen auf dem Interval $(-\frac{\pi}2,\frac{\pi}2)$ ist +\[ +\langle f,g\rangle += +\frac12\int_{-\frac{\pi}2}^{\frac{\pi}2} f(x)g(x)\cos x\,dx +\] +ein Skalarprodukt. +Bestimmen Sie bezüglich dieses Skalarproduktes orthogonale Polynome +bis zum Grad $2$. + +\begin{hinweis} +Verwenden Sie +\begin{align*} +\int_{-\frac{\pi}2}^{\frac{\pi}2} 1\cos x\,dx +&= +1, +& +\int_{-\frac{\pi}2}^{\frac{\pi}2} x^2\cos x\,dx +&= +\frac{\pi^2-8}{2}, +& +\int_{-\frac{\pi}2}^{\frac{\pi}2} x^4\cos x\,dx +&= +\frac{\pi^4-48\pi^2+384}{8}. +\end{align*} +\end{hinweis} + +\begin{loesung} +Wir müssen den Gram-Schmidt-Orthogonalisierungsprozess für die +Polynome $f_0(x)=1$, $f_1(x)=x$ und $f_2(x)=x^2$ durchführen. +Zunächst halten wir fest, dass +\[ +\langle f_0,f_0\rangle += +\frac12 +\int_{-\frac{\pi}2}^{\frac{\pi}2} \cos x\,dx += +1, +\] +das Polynom $g_0(x)=f_0(x)$ ist hat also Norm $1$. + +Ein dazu orthogonales Polynom ist +\( +f_1(x) - \langle g_0,f_1\rangle g_0(x), +\) +wir müssen also das Skalarprodukt +\[ +\langle g_0,f_1\rangle += +\frac{1}{2} +\int_{-\frac{\pi}2}^{\frac{\pi}2} +x\cos x\,dx +\] +bestimmen. +Es verschwindet, weil die Funktion $x\cos x$ ungerade ist. +Somit ist die Funktion $f_1(x)=x$ orthogonal zu $f_0(x)=1$, um sie auch zu +normieren berechnen wir das Integral +\[ +\| f_1\|^2 += +\frac12\int_{-\frac{\pi}2}^{\frac{\pi}2} x^2\cos x\,dx += +\frac{\pi^2-8}{4}, +\] +und +\[ +g_1(x) += +\frac{2}{\sqrt{\pi^2-8}} x. +\] + +Zur Berechnung von $g_2$ müssen wir die Skalarprodukte +\begin{align*} +\langle g_0,f_2\rangle +&= +\frac{1}{2} +\int_{-\frac{\pi}2}^{\frac{\pi}2} +x^2 +\cos x +\,dx += +\frac{\pi^2-8}{4} +\\ +\langle g_1,f_2\rangle +&= +\frac{1}{2} +\int_{-\frac{\pi}2}^{\frac{\pi}2} +\frac{2}{\sqrt{\pi^2-8}} +x +\cdot x^2 +\cos x +\,dx += +0 +\end{align*} +bestimmen. +Damit wird das dritte Polynom +\[ +f_2(x) +- g_0(x)\langle g_0,f_2\rangle +- g_1(x)\langle g_1,f_2\rangle += +x^2 - \frac{\pi^2-8}{4}, +\] +welches bereits orthogonal ist zu $g_0$ und $g_1$. +Wir können auch noch erreichen, obwohl das nicht verlangt war, +dass es normiert ist, indem wir die Norm berechnen: +\[ +\left\| x^2-\frac{\pi^2-8}{4} \right\|^2 += +\frac12 +\int_{-\frac{\pi}2}^{\frac{\pi}2} +\biggl(x^2-\frac{\pi^2-8}{4}\biggr)^2 +\cos x\,dx += +20-2\pi^2 +\] +woraus sich +\[ +g_2(x) += +\frac{1}{\sqrt{20-2\pi^2}} +\biggl( +x^2 - \frac{\pi^2-8}{4} +\biggr). +\] +Damit haben wir die ersten drei bezüglich des obigen Skalarproduktes +orthogonalen Polynome +\begin{align*} +g_0(x)&=1, +& +g_1(x)&=\frac{2x}{\sqrt{\pi^2-8}}, +& +g_2(x)&=\frac{1}{\sqrt{20-2\pi^2}}\biggl(x^2-\frac{\pi^2-8}{4}\biggr) +\end{align*} +gefunden. +\end{loesung} |