aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/080-funktionentheorie/analytisch.tex
diff options
context:
space:
mode:
authorNicolas Tobler <nicolas.tobler@ost.ch>2022-08-03 20:37:12 +0200
committerNicolas Tobler <nicolas.tobler@ost.ch>2022-08-03 20:37:12 +0200
commite08392d4bacb9a54c3ab755fa6445514749b608f (patch)
tree67af5a4a6ed541b1b425de89fd05c2a74a265571 /buch/chapters/080-funktionentheorie/analytisch.tex
parentimproved Einleitung (diff)
parentMerge pull request #39 from NaoPross/master (diff)
downloadSeminarSpezielleFunktionen-e08392d4bacb9a54c3ab755fa6445514749b608f.tar.gz
SeminarSpezielleFunktionen-e08392d4bacb9a54c3ab755fa6445514749b608f.zip
Merge branch 'master' of https://github.com/AndreasFMueller/SeminarSpezielleFunktionen
Diffstat (limited to '')
-rw-r--r--buch/chapters/080-funktionentheorie/analytisch.tex80
1 files changed, 58 insertions, 22 deletions
diff --git a/buch/chapters/080-funktionentheorie/analytisch.tex b/buch/chapters/080-funktionentheorie/analytisch.tex
index 15ca2e4..08196f1 100644
--- a/buch/chapters/080-funktionentheorie/analytisch.tex
+++ b/buch/chapters/080-funktionentheorie/analytisch.tex
@@ -9,6 +9,9 @@
Holomorphe Funktionen zeichnen sich dadurch aus, dass sie auch immer
eine konvergente Reihenentwicklung haben, sie sind also analytisch.
+%
+% Definition
+%
\subsection{Definition}
\index{Taylor-Reihe}%
\index{Exponentialfunktion}%
@@ -90,29 +93,29 @@ Damit ist gezeigt, dass alle Ableitungen $f^{(n)}(0)=0$ sind.
Die Taylorreihe von $f(x)$ ist daher die Nullfunktion.
\end{beispiel}
-Die Klasse der Funktionen, die sich durch ihre Taylor-Reihe darstellen
-lassen, zeichnet sich also durch besondere Eigenschaften aus, die in
-der folgenden Definition zusammengefasst werden.
-
-\index{analytisch in einem Punkt}%
-\index{analytisch}%
-\begin{definition}
-Eine auf einem offenen Intervall $I\subset \mathbb {R}$ definierte Funktion
-$f\colon U\to\mathbb{R}$ heisst {\em analytisch im Punkt $x_0\in I$}, wenn
-es eine in einer Umgebung von $x_0$ konvergente Potenzreihe
-\[
-\sum_{k=0}^\infty a_k(x-x_0)^k = f(x)
-\]
-gibt.
-Sie heisst {\em analytisch}, wenn sie analytisch ist in jedem Punkt von $I$.
-\end{definition}
+%Die Klasse der Funktionen, die sich durch ihre Taylor-Reihe darstellen
+%lassen, zeichnet sich also durch besondere Eigenschaften aus, die in
+%der folgenden Definition zusammengefasst werden.
+%
+%\index{analytisch in einem Punkt}%
+%\index{analytisch}%
+%\begin{definition}
+%Eine auf einem offenen Intervall $I\subset \mathbb {R}$ definierte Funktion
+%$f\colon U\to\mathbb{R}$ heisst {\em analytisch im Punkt $x_0\in I$}, wenn
+%es eine in einer Umgebung von $x_0$ konvergente Potenzreihe
+%\[
+%\sum_{k=0}^\infty a_k(x-x_0)^k = f(x)
+%\]
+%gibt.
+%Sie heisst {\em analytisch}, wenn sie analytisch ist in jedem Punkt von $I$.
+%\end{definition}
-Es ist wohlbekannt aus der elementaren Theorie der Potenzreihen, dass
+Es ist bekannt aus der elementaren Theorie der Potenzreihen
+in Kapitel~\ref{buch:potenzen:section:potenzreihen}, dass
eine analytische Funktion beliebig oft differenzierbar ist und dass
die Potenzreihe im Punkt $x_0$ die Taylor-Reihe sein muss.
-Ausserdem sidn Summen, Differenzen und Produkte von analytischen Funktionen
+Ausserdem sind Summen, Differenzen und Produkte von analytischen Funktionen
wieder analytisch.
-
Für eine komplexe Funktion lässt sich der Begriff der
analytischen Funktion genau gleich definieren.
@@ -131,8 +134,8 @@ Die Verwendung einer offenen Teilmenge $U\subset\mathbb{C}$ ist wesentlich,
denn die Funktion $f\colon z\mapsto \overline{z}$ kann in jedem Punkt
$x_0\in\mathbb{R}$
der reellen Achse $\mathbb{R}\subset\mathbb{C}$ durch die Potenzreihe
-$f(x) = x_0 + (x-x_0)$ dargestellt werden.
-Es gibt aber keine Potenzreihe, die $f(z)$ in einer offenen Teilmenge
+$f(x) = x_0 + (x-x_0)$ dargestellt werden,
+es gibt aber keine Potenzreihe, die $f(z)$ in einer offenen Teilmenge
von $\mathbb{C}$ gegen $f(z)=\overline{z}$ konvergiert.
%
@@ -140,7 +143,40 @@ von $\mathbb{C}$ gegen $f(z)=\overline{z}$ konvergiert.
%
\subsection{Konvergenzradius
\label{buch:funktionentheorie:subsection:konvergenzradius}}
+In der Theorie der Potenzreihen, wie sie in Kapitel~\ref{buch:chapter:potenzen}
+zusammengefasst wurde, wird auch untersucht, wie gross
+eine Umgebung des Punktes $z_0$ ist, in der die Potenzreihe
+im Punkt $z_0$ einer analytischen Funktion konvergiert.
+Die Definition des Konvergenzradius gilt auch für komplexe Funktionen.
-% XXX auf dem Rand des Konvergenzkreises gibt es immer eine Singularität
+\begin{satz}
+\index{Satz!Konvergenzradius}%
+\label{buch:funktionentheorie:satz:konvergenzradius}
+Die Potenzreihe
+\[
+f(z) = \sum_{k=0}^\infty a_0(z-z_0)^k
+\]
+ist konvergent auf einem Kreis um $z_0$ mit Radius $\varrho$ und
+\[
+\frac{1}{\varrho}
+=
+\limsup_{n\to\infty} \sqrt[k]{|a_k|}.
+\]
+Falls $a_k\ne 0$ für alle $k$ und der folgende Grenzwert existiert,
+dann gilt auch
+\[
+\varrho = \lim_{n\to\infty} \biggl| \frac{a_n}{a_{n+1}}\biggr|.
+\]
+\end{satz}
+
+\begin{definition}
+\label{buch:funktionentheorie:definition:konvergenzradius}
+\index{Konvergenzradius}%
+Der in Satz~\ref{buch:funktionentheorie:satz:konvergenzradius}
+Radius $\varrho$ des Konvergenzkreises heisst {\em Konvergenzradius}.
+\end{definition}
+Man kann auch zeigen, dass der Konvergenzkreis immer so gross ist,
+dass auf seinem Rand ein Wert $z$ liegt, für den die Potenzreihe nicht
+konvergiert.