diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2022-03-13 23:26:58 +0100 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2022-03-13 23:26:58 +0100 |
commit | f5047d4d780e996a8b8f7738c1ac7c884a07f135 (patch) | |
tree | d1f249001ee30abf9609efe8dcbad8b77ed0fd76 /buch/chapters/090-pde/uebungsaufgaben | |
parent | add beta distribution graphs (diff) | |
download | SeminarSpezielleFunktionen-f5047d4d780e996a8b8f7738c1ac7c884a07f135.tar.gz SeminarSpezielleFunktionen-f5047d4d780e996a8b8f7738c1ac7c884a07f135.zip |
new stuff about beta, test2
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/090-pde/uebungsaufgaben/901.tex | 82 |
1 files changed, 82 insertions, 0 deletions
diff --git a/buch/chapters/090-pde/uebungsaufgaben/901.tex b/buch/chapters/090-pde/uebungsaufgaben/901.tex new file mode 100644 index 0000000..67fa8e5 --- /dev/null +++ b/buch/chapters/090-pde/uebungsaufgaben/901.tex @@ -0,0 +1,82 @@ +Die Differentialgleichung +\begin{equation} +\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2} +\qquad +\text{im Gebiet} +\qquad +(t,x)\in \Omega=\mathbb{R}^+\times (0,l) +\label{505:waermeleitungsgleichung} +\end{equation} +beschreibt die Änderung der Temperatur eines Stabes der Länge $l$. +Die homogene Randbedingung +\begin{equation} +u(t,0)= +u(t,l)=0 +\label{505:homogene-randbedingung} +\end{equation} +besagt, dass der Stab an seinen Enden auf Temperatur $0$ gehalten. +Zur Lösung dieser Differentialgleichung muss auch die Temperatur +zur Zeit $t=0$ in Form einer Randbedingung +\[ +u(0,x) = T_0(x) +\] +gegeben sein. +Führen Sie Separation für die +Differentialgleichung~\eqref{505:waermeleitungsgleichung} +durch und bestimmen Sie die zulässigen Werte der Separationskonstanten. + +\begin{loesung} +Man verwendet den Ansatz $u(t,x)= T(t)\cdot X(x)$ und setzt diesen +in die Differentialgleichung ein, die dadurch zu +\[ +T'(t)X(x) = \kappa T(t) X''(x) +\] +wird. +Division durch $T(t)X(x)$ wird dies zu +\[ +\frac{T'(t)}{T(t)} += +\kappa +\frac{X''(x)}{X(x)}. +\] +Da die linke Seite nur von $t$ abhängt, die rechte aber nur von $x$, müssen +beide Seiten konstant sein. +Wir bezeichnen die Konstante mit $-\lambda^2$, so dass wir die beiden +gewöhnlichen Differentialgleichungen +\begin{align*} +\frac{1}{\kappa} +\frac{T'(t)}{T(t)}&=-\lambda^2 +& +\frac{X''(x)}{X(x)}&=-\lambda^2 +\\ +T'(t)&=-\lambda^2\kappa T(t) +& +X''(x) &= -\lambda^2 X(x) +\intertext{welche die Lösungen} +T(t)&=Ce^{-\lambda^2\kappa t} +& +X(x)&= A\cos\lambda x + B\sin\lambda x +\end{align*} +haben. +Die Lösung $X(x)$ muss aber auch die homogene Randbedingung +\eqref{505:homogene-randbedingung} erfüllen. +Setzt man $x=0$ und $x=l$ ein, folgt +\begin{align*} +0 = X(0)&=A\cos 0 + B\sin 0 = A +& +0 = X(l)&=B\sin \lambda l, +\end{align*} +woraus man schliessen kann, dass $\lambda l$ ein ganzzahliges +Vielfaches von $\pi$ ist, wir schreiben $\lambda l = k\pi$ oder +\[ +\lambda = \frac{k\pi}{l}. +\] +Damit sind die möglichen Werte $\lambda$ bestimmt und man kann jetzt +auch die möglichen Lösungen aufschreiben, sie sind +\[ +u(t,x) += +\sum_{k=1}^\infty b_k e^{-k^2\pi^2\kappa t/l^2}\sin\frac{k\pi x}{l}. +\qedhere +\] +\end{loesung} |