diff options
author | LordMcFungus <mceagle117@gmail.com> | 2022-07-22 21:28:45 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-07-22 21:28:45 +0200 |
commit | 23f17598c1742c70f442b94044a20aa821022c5a (patch) | |
tree | a945540ee6a4e86b37df2f01e3a91584b4797c4f /buch/chapters/110-elliptisch | |
parent | Merge pull request #2 from AndreasFMueller/master (diff) | |
parent | Merge pull request #25 from JODBaer/master (diff) | |
download | SeminarSpezielleFunktionen-23f17598c1742c70f442b94044a20aa821022c5a.tar.gz SeminarSpezielleFunktionen-23f17598c1742c70f442b94044a20aa821022c5a.zip |
Merge pull request #3 from AndreasFMueller/master
update
Diffstat (limited to '')
53 files changed, 6338 insertions, 1679 deletions
diff --git a/buch/chapters/110-elliptisch/Makefile.inc b/buch/chapters/110-elliptisch/Makefile.inc index 0ca1392..4e2644c 100644 --- a/buch/chapters/110-elliptisch/Makefile.inc +++ b/buch/chapters/110-elliptisch/Makefile.inc @@ -4,8 +4,16 @@ # (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # -CHAPTERFILES = $(CHAPTERFILES) \ +CHAPTERFILES += \ chapters/110-elliptisch/ellintegral.tex \ chapters/110-elliptisch/jacobi.tex \ + chapters/110-elliptisch/elltrigo.tex \ + chapters/110-elliptisch/dglsol.tex \ + chapters/110-elliptisch/mathpendel.tex \ chapters/110-elliptisch/lemniskate.tex \ - chapters/110-geometrie/chapter.tex + chapters/110-elliptisch/uebungsaufgaben/1.tex \ + chapters/110-elliptisch/uebungsaufgaben/2.tex \ + chapters/110-elliptisch/uebungsaufgaben/3.tex \ + chapters/110-elliptisch/uebungsaufgaben/4.tex \ + chapters/110-elliptisch/uebungsaufgaben/5.tex \ + chapters/110-elliptisch/chapter.tex diff --git a/buch/chapters/110-elliptisch/agm/Makefile b/buch/chapters/110-elliptisch/agm/Makefile new file mode 100644 index 0000000..8dab511 --- /dev/null +++ b/buch/chapters/110-elliptisch/agm/Makefile @@ -0,0 +1,15 @@ +# +# Makefile +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +all: sn + +sn: sn.cpp + g++ -O -Wall -g -std=c++11 sn.cpp -o sn `pkg-config --cflags gsl` `pkg-config --libs gsl` + + +agm: agm.cpp + g++ -O -Wall -g -std=c++11 agm.cpp -o agm `pkg-config --cflags gsl` `pkg-config --libs gsl` + ./agm + diff --git a/buch/chapters/110-elliptisch/agm/agm.cpp b/buch/chapters/110-elliptisch/agm/agm.cpp new file mode 100644 index 0000000..8abb4b2 --- /dev/null +++ b/buch/chapters/110-elliptisch/agm/agm.cpp @@ -0,0 +1,75 @@ +/* + * agm.cpp + * + * (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule + */ +#include <cstdlib> +#include <cstdio> +#include <cmath> +#include <iostream> +#include <gsl/gsl_sf_ellint.h> + +inline long double sqrl(long double x) { + return x * x; +} + +long double Xn(long double a, long double b, long double x) { + double long epsilon = fabsl(a - b); + if (epsilon > 0.001) { + return (a - sqrtl(sqrl(a) - sqrl(x) * (a + b) * (a - b))) + / (x * (a - b)); + } + long double d = a + b; + long double x1 = 0; + long double y2 = sqrl(x/a); + long double c = 1; + long double s = 0; + int k = 1; + while (c > 0.0000000000001) { + c *= (0.5 - (k - 1)) / k; + c *= (d - epsilon) * y2; + s += c; + c *= epsilon; + c = -c; + k++; + } + return s * a / x; +} + +int main(int argc, char *argv[]) { + long double a = 1; + long double b = sqrtl(2.)/2; + long double x = 0.7; + if (argc >= 3) { + a = std::stod(argv[1]); + b = std::stod(argv[2]); + } + if (argc >= 4) { + x = std::stod(argv[3]); + } + + { + long double an = a; + long double bn = b; + long double xn = x; + for (int i = 0; i < 10; i++) { + printf("%d %24.18Lf %24.18Lf %24.18Lf %24.18Lf\n", + i, an, bn, xn, a * asin(xn) / an); + long double A = (an + bn) / 2; + xn = Xn(an, bn, xn); + bn = sqrtl(an * bn); + an = A; + } + } + + { + double k = b/a; + k = sqrt(1 - k*k); + double K = gsl_sf_ellint_Kcomp(k, GSL_PREC_DOUBLE); + printf(" %24.18f %24.18f\n", k, K); + double F = gsl_sf_ellint_F(asinl(x), k, GSL_PREC_DOUBLE); + printf(" %24.18f %24.18f\n", k, F); + } + + return EXIT_SUCCESS; +} diff --git a/buch/chapters/110-elliptisch/agm/agm.m b/buch/chapters/110-elliptisch/agm/agm.m new file mode 100644 index 0000000..dcb3ad8 --- /dev/null +++ b/buch/chapters/110-elliptisch/agm/agm.m @@ -0,0 +1,20 @@ +# +# agm.m +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +format long + +n = 10; +a = 1; +b = sqrt(0.5); + +for i = (1:n) + printf("%20.16f %20.16f\n", a, b); + A = (a+b)/2; + b = sqrt(a*b); + a = A; +end + +K = pi / (2 * a) + diff --git a/buch/chapters/110-elliptisch/agm/agm.maxima b/buch/chapters/110-elliptisch/agm/agm.maxima new file mode 100644 index 0000000..c7facd4 --- /dev/null +++ b/buch/chapters/110-elliptisch/agm/agm.maxima @@ -0,0 +1,26 @@ +/* + * agm.maxima + * + * (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule + */ + +S: 2*a*sin(theta1) / (a+b+(a-b)*sin(theta1)^2); + +C2: ratsimp(diff(S, theta1)^2 / (1 - S^2)); +C2: ratsimp(subst(sqrt(1-sin(theta1)^2), cos(theta1), C2)); +C2: ratsimp(subst(S, sin(theta), C2)); +C2: ratsimp(subst(sqrt(1-S^2), cos(theta), C2)); + +D2: (a^2 * cos(theta)^2 + b^2 * sin(theta)^2) + / + (a1^2 * cos(theta1)^2 + b1^2 * sin(theta1)^2); +D2: subst((a+b)/2, a1, D2); +D2: subst(sqrt(a*b), b1, D2); +D2: ratsimp(subst(1-S^2, cos(theta)^2, D2)); +D2: ratsimp(subst(S, sin(theta), D2)); +D2: ratsimp(subst(1-sin(theta1)^2, cos(theta1)^2, D2)); + +Q: D2/C2; +Q: ratsimp(subst(x, sin(theta1), Q)); + +Q: ratsimp(expand(ratsimp(Q))); diff --git a/buch/chapters/110-elliptisch/agm/sn.cpp b/buch/chapters/110-elliptisch/agm/sn.cpp new file mode 100644 index 0000000..9e1b047 --- /dev/null +++ b/buch/chapters/110-elliptisch/agm/sn.cpp @@ -0,0 +1,52 @@ +/* + * sn.cpp + * + * (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule + */ +#include <cstdlib> +#include <cstdio> +#include <cmath> +#include <iostream> +#include <gsl/gsl_sf_ellint.h> +#include <gsl/gsl_sf_elljac.h> + +static const int N = 10; + +inline long double sqrl(long double x) { + return x * x; +} + +int main(int argc, char *argv[]) { + long double u = 0.6; + long double k = 0.9; + long double kprime = sqrt(1 - sqrl(k)); + + long double a[N], b[N], x[N+1]; + a[0] = 1; + b[0] = kprime; + + for (int n = 0; n < N-1; n++) { + printf("a[%d] = %22.18Lf b[%d] = %22.18Lf\n", n, a[n], n, b[n]); + a[n+1] = (a[n] + b[n]) / 2; + b[n+1] = sqrtl(a[n] * b[n]); + } + + x[N] = sinl(u * a[N-1]); + printf("x[%d] = %22.18Lf\n", N, x[N]); + + for (int n = N - 1; n >= 0; n--) { + x[n] = 2 * a[n] * x[n+1] / (a[n] + b[n] + (a[n] - b[n]) * sqrl(x[n+1])); + printf("x[%2d] = %22.18Lf\n", n, x[n]); + } + + printf("sn(%7.4Lf, %7.4Lf) = %20.24Lf\n", u, k, x[0]); + + double sn, cn, dn; + double m = sqrl(k); + gsl_sf_elljac_e((double)u, m, &sn, &cn, &dn); + printf("sn(%7.4Lf, %7.4Lf) = %20.24f\n", u, k, sn); + printf("cn(%7.4Lf, %7.4Lf) = %20.24f\n", u, k, cn); + printf("dn(%7.4Lf, %7.4Lf) = %20.24f\n", u, k, dn); + + return EXIT_SUCCESS; +} diff --git a/buch/chapters/110-elliptisch/chapter.tex b/buch/chapters/110-elliptisch/chapter.tex index a03ce24..21fc986 100644 --- a/buch/chapters/110-elliptisch/chapter.tex +++ b/buch/chapters/110-elliptisch/chapter.tex @@ -10,21 +10,40 @@ \rhead{} Der Versuch, die Länge eines Ellipsenbogens zu berechnen, hat -in Abschnitt~\ref{buch:geometrie:subsection:hyperbeln-und-ellipsen} +in Abschnitt~\ref{buch:geometrie:subsection:kegelschnitte} zu Integralen geführt, die nicht in geschlossener Form ausgewertet werden können. Neben den dort gefundenen Integralen sind noch weitere, ähnlich aufgebaute Integrale in dieser Familie zu finden. +Auf die trigonometrischen Funktionen stösst man, indem man Funktion +der Bogenlänge umkehrt. +Ein analoges Vorgehen bei den elliptischen Integralen führt auf +die Jacobischen elliptischen Funktionen, die in +Abschnitt~\ref{buch:elliptisch:section:jacobi} allerdings auf +eine eher geometrische Art eingeführt werden. +Die Verbindung zu den elliptischen Integralen wird dann in +Abschnitt~\ref{buch:elliptisch:subsection:differentialgleichungen} +wieder hergestellt. + \input{chapters/110-elliptisch/ellintegral.tex} + \input{chapters/110-elliptisch/jacobi.tex} +\input{chapters/110-elliptisch/elltrigo.tex} +\input{chapters/110-elliptisch/dglsol.tex} +\input{chapters/110-elliptisch/mathpendel.tex} + \input{chapters/110-elliptisch/lemniskate.tex} -%\section*{Übungsaufgaben} -%\rhead{Übungsaufgaben} -%\aufgabetoplevel{chapters/020-exponential/uebungsaufgaben} -%\begin{uebungsaufgaben} +\section*{Übungsaufgaben} +\rhead{Übungsaufgaben} +\aufgabetoplevel{chapters/110-elliptisch/uebungsaufgaben} +\begin{uebungsaufgaben} %\uebungsaufgabe{0} -%\uebungsaufgabe{1} -%\end{uebungsaufgaben} +\uebungsaufgabe{1} +\uebungsaufgabe{2} +\uebungsaufgabe{3} +\uebungsaufgabe{4} +\uebungsaufgabe{5} +\end{uebungsaufgaben} diff --git a/buch/chapters/110-elliptisch/dglsol.tex b/buch/chapters/110-elliptisch/dglsol.tex new file mode 100644 index 0000000..c5b3a5c --- /dev/null +++ b/buch/chapters/110-elliptisch/dglsol.tex @@ -0,0 +1,712 @@ +% +% dglsol.tex -- Lösung von Differentialgleichungen +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% + +% +% Lösung von Differentialgleichungen +% +\subsection{Lösungen von Differentialgleichungen +\label{buch:elliptisch:subsection:differentialgleichungen}} +Die elliptischen Funktionen ermöglichen die Lösung gewisser nichtlinearer +Differentialgleichungen in geschlossener Form. +Ziel dieses Abschnitts ist, Differentialgleichungen der Form +\( +\dot{x}(t)^2 += +P(x(t)) +\) +mit einem Polynom $P$ vierten Grades oder +\( +\ddot{x}(t) += +p(x(t)) +\) +mit einem Polynom dritten Grades als rechter Seite lösen zu können. + +% +% Die Differentialgleichung der elliptischen Funktionen +% +\subsubsection{Die Differentialgleichungen der elliptischen Funktionen} +Um Differentialgleichungen mit elliptischen Funktion lösen zu +können, muss man als erstes die Differentialgleichungen derselben +finden. +Quadriert man die Ableitungsregel für $\operatorname{sn}(u,k)$, erhält +man +\[ +\biggl(\frac{d}{du}\operatorname{sn}(u,k)\biggr)^2 += +\operatorname{cn}(u,k)^2 \operatorname{dn}(u,k)^2. +\] +Die Funktionen auf der rechten Seite können durch $\operatorname{sn}(u,k)$ +ausgedrückt werden, dies führt auf die Differentialgleichung +\begin{align*} +\biggl(\frac{d}{du}\operatorname{sn}(u,k)\biggr)^2 +&= +\bigl( +1-\operatorname{sn}(u,k)^2 +\bigr) +\bigl( +1-k^2 \operatorname{sn}(u,k)^2 +\bigr) +\\ +&= +k^2\operatorname{sn}(u,k)^4 +-(1+k^2) +\operatorname{sn}(u,k)^2 ++1. +\end{align*} +Für die Funktion $\operatorname{cn}(u,k)$ ergibt die analoge Rechnung +\begin{align*} +\frac{d}{du}\operatorname{cn}(u,k) +&= +-\operatorname{sn}(u,k) \operatorname{dn}(u,k) +\\ +\biggl(\frac{d}{du}\operatorname{cn}(u,k)\biggr)^2 +&= +\operatorname{sn}(u,k)^2 \operatorname{dn}(u,k)^2 +\\ +&= +\bigl(1-\operatorname{cn}(u,k)^2\bigr) +\bigl(k^{\prime 2}+k^2 \operatorname{cn}(u,k)^2\bigr) +\\ +&= +-k^2\operatorname{cn}(u,k)^4 ++ +(k^2-k^{\prime 2})\operatorname{cn}(u,k)^2 ++ +k^{\prime 2} +\intertext{und weiter für $\operatorname{dn}(u,k)$:} +\frac{d}{du}\operatorname{dn}(u,k) +&= +-k^2\operatorname{sn}(u,k)\operatorname{cn}(u,k) +\\ +\biggl( +\frac{d}{du}\operatorname{dn}(u,k) +\biggr)^2 +&= +\bigl(k^2 \operatorname{sn}(u,k)^2\bigr) +\bigl(k^2 \operatorname{cn}(u,k)^2\bigr) +\\ +&= +\bigl( +1-\operatorname{dn}(u,k)^2 +\bigr) +\bigl( +\operatorname{dn}(u,k)^2-k^{\prime 2} +\bigr) +\\ +&= +-\operatorname{dn}(u,k)^4 ++ +(1+k^{\prime 2})\operatorname{dn}(u,k)^2 +-k^{\prime 2}. +\end{align*} + +\begin{table} +\centering +\renewcommand{\arraystretch}{1.7} +\begin{tabular}{|>{$}l<{$}|>{$}l<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} +\hline +\text{Funktion $y=$}&\text{Differentialgleichung}&\alpha&\beta&\gamma\\ +\hline +\operatorname{sn}(u,k) + & y'^2 = \phantom{-}(1-y^2)(1-k^2y^2) + &k^2&1+k^2&1 +\\ +\operatorname{cn}(u,k) &y'^2 = \phantom{-}(1-y^2)(k^{\prime2}+k^2y^2) + &-k^2 &k^2-k^{\prime 2}=2k^2-1&k^{\prime2} +\\ +\operatorname{dn}(u,k) + & y'^2 = -(1-y^2)(k^{\prime 2}-y^2) + &-1 &1+k^{\prime 2}=2-k^2 &-k^{\prime2} +\\ +\hline +\end{tabular} +\caption{Elliptische Funktionen als Lösungsfunktionen für verschiedene +nichtlineare Differentialgleichungen der Art +\eqref{buch:elliptisch:eqn:1storderdglell}. +Die Vorzeichen der Koeffizienten $\alpha$, $\beta$ und $\gamma$ +entscheidet darüber, welche Funktion für die Lösung verwendet werden +muss. +\label{buch:elliptisch:tabelle:loesungsfunktionen}} +\end{table} + +Die drei grundlegenden Jacobischen elliptischen Funktionen genügen also alle +einer nichtlinearen Differentialgleichung erster Ordnung der selben Art. +Das Quadrat der Ableitung ist ein Polynom vierten Grades der Funktion. +Die Differentialgleichungen sind in der +Tabelle~\ref{buch:elliptisch:tabelle:loesungsfunktionen} zusammengefasst. + +% +% Differentialgleichung der abgeleiteten elliptischen Funktionen +% +\subsubsection{Die Differentialgleichung der abgeleiteten elliptischen +Funktionen} +Da auch die Ableitungen der abgeleiteten Jacobischen elliptischen +Funktionen Produkte von genau zwei Funktionen sind, die sich wieder +durch die ursprüngliche Funktion ausdrücken lassen, darf man erwarten, +dass alle elliptischen Funktionen einer ähnlichen Differentialgleichung +genügen. +Um dies besser einzufangen, schreiben wir $\operatorname{pq}(u,k)$, +wenn wir eine beliebige abgeleitete Jacobische elliptische Funktion. +Für +$\operatorname{pq}=\operatorname{sn}$ +$\operatorname{pq}=\operatorname{cn}$ +und +$\operatorname{pq}=\operatorname{dn}$ +wissen wir bereits und erwarten für jede andere Funktion dass +$\operatorname{pq}(u,k)$ auch, dass sie Lösung einer Differentialgleichung +der Form +\begin{equation} +\operatorname{pq}'(u,k)^2 += +\alpha \operatorname{pq}(u,k)^4 + \beta \operatorname{pq}(u,k)^2 + \gamma +\label{buch:elliptisch:eqn:1storderdglell} +\end{equation} +erfüllt, +wobei wir mit $\operatorname{pq}'(u,k)$ die Ableitung von +$\operatorname{pq}(u,k)$ nach dem ersten Argument meinen. +Die Koeffizienten $\alpha$, $\beta$ und $\gamma$ hängen von $k$ ab, +ihre Werte für die grundlegenden Jacobischen elliptischen +sind in Tabelle~\ref{buch:elliptisch:table:differentialgleichungen} +zusammengestellt. + +Die Koeffizienten müssen nicht für jede Funktion wieder neu bestimmt +werden, denn für den Kehrwert einer Funktion lässt sich die +Differentialgleichung aus der Differentialgleichung der ursprünglichen +Funktion ermitteln. + +% +% Differentialgleichung der Kehrwertfunktion +% +\subsubsection{Differentialgleichung für den Kehrwert einer elliptischen Funktion} +Aus der Differentialgleichung~\eqref{buch:elliptisch:eqn:1storderdglell} +für die Funktion $\operatorname{pq}(u,k)$ kann auch eine +Differentialgleichung für den Kehrwert +$\operatorname{qp}(u,k)=\operatorname{pq}(u,k)^{-1}$ +ableiten. +Dazu rechnet man +\[ +\operatorname{qp}'(u,k) += +\frac{d}{du}\frac{1}{\operatorname{pq}(u,k)} += +\frac{\operatorname{pq}'(u,k)}{\operatorname{pq}(u,k)^2} +\qquad\Rightarrow\qquad +\left\{ +\quad +\begin{aligned} +\operatorname{pq}(u,k) +&= +\frac{1}{\operatorname{qp}(u,k)} +\\ +\operatorname{pq}'(u,k) +&= +\frac{\operatorname{qp}'(u,k)}{\operatorname{qp}(u,k)^2} +\end{aligned} +\right. +\] +und setzt in die Differentialgleichung ein: +\begin{align*} +\biggl( +\frac{ +\operatorname{qp}'(u,k) +}{ +\operatorname{qp}(u,k) +} +\biggr)^2 +&= +\alpha \frac{1}{\operatorname{qp}(u,k)^4} ++ +\beta \frac{1}{\operatorname{qp}(u,k)^2} ++ +\gamma. +\end{align*} +Nach Multiplikation mit $\operatorname{qp}(u,k)^4$ erhält man den +folgenden Satz. + +\begin{satz} +\index{Satz!Differentialgleichung von $1/\operatorname{pq}(u,k)$}% +Wenn die Jacobische elliptische Funktion $\operatorname{pq}(u,k)$ +der Differentialgleichung~\eqref{buch:elliptisch:eqn:1storderdglell} +genügt, dann genügt der Kehrwert +$\operatorname{qp}(u,k) = 1/\operatorname{pq}(u,k)$ der Differentialgleichung +\begin{equation} +(\operatorname{qp}'(u,k))^2 += +\gamma \operatorname{qp}(u,k)^4 ++ +\beta \operatorname{qp}(u,k)^2 ++ +\alpha +\label{buch:elliptisch:eqn:kehrwertdgl} +\end{equation} +\end{satz} + +\begin{table} +\centering +\def\lfn#1{\multicolumn{1}{|l|}{#1}} +\def\rfn#1{\multicolumn{1}{r|}{#1}} +\renewcommand{\arraystretch}{1.3} +\begin{tabular}{l|>{$}c<{$}>{$}c<{$}>{$}c<{$}|r} +\cline{1-4} +\lfn{Funktion} + & \alpha & \beta & \gamma &\\ +\hline +\lfn{sn}& k^2 & -(1+k^2) & 1 &\rfn{ns}\\ +\lfn{cn}& -k^2 & -(1-2k^2) & 1-k^2 &\rfn{nc}\\ +\lfn{dn}& 1 & 2-k^2 & -(1-k^2) &\rfn{nd}\\ +\hline +\lfn{sc}& 1-k^2 & 2-k^2 & 1 &\rfn{cs}\\ +\lfn{sd}&-k^2(1-k^2)&-(1-2k^2) & 1 &\rfn{ds}\\ +\lfn{cd}& k^2 &-(1+k^2) & 1 &\rfn{dc}\\ +\hline + & \gamma & \beta & \alpha &\rfn{Reziproke}\\ +\cline{2-5} +\end{tabular} +\caption{Koeffizienten der Differentialgleichungen für die Jacobischen +elliptischen Funktionen. +Der Kehrwert einer Funktion hat jeweils die Differentialgleichung der +ursprünglichen Funktion, in der die Koeffizienten $\alpha$ und $\gamma$ +vertauscht worden sind. +\label{buch:elliptisch:table:differentialgleichungen}} +\end{table} + +% +% Differentialgleichung zweiter Ordnung +% +\subsubsection{Differentialgleichung zweiter Ordnung} +Leitet man die Differentialgleichung~\eqref{buch:elliptisch:eqn:1storderdglell} +nochmals nach $u$ ab, erhält man die Differentialgleichung +\[ +2\operatorname{pq}''(u,k)\operatorname{pq}'(u,k) += +4\alpha \operatorname{pq}(u,k)^3\operatorname{pq}'(u,k) + 2\beta \operatorname{pq}'(u,k)\operatorname{pq}(u,k). +\] +Teilt man auf beiden Seiten durch $2\operatorname{pq}'(u,k)$, +bleibt die nichtlineare +Differentialgleichung +\[ +\frac{d^2\operatorname{pq}}{du^2} += +\beta \operatorname{pq} + 2\alpha \operatorname{pq}^3. +\] +Dies ist die Gleichung eines harmonischen Oszillators mit einer +Anharmonizität der Form $2\alpha z^3$. + + + +% +% Jacobischen elliptische Funktionen und elliptische Integrale +% +\subsubsection{Jacobische elliptische Funktionen als elliptische Integrale} +Die in Tabelle~\ref{buch:elliptisch:tabelle:loesungsfunktionen} +zusammengestellten Differentialgleichungen ermöglichen nun, den +Zusammenhang zwischen den Funktionen +$\operatorname{sn}(u,k)$, $\operatorname{cn}(u,k)$ und $\operatorname{dn}(u,k)$ +und den unvollständigen elliptischen Integralen herzustellen. +Die Differentialgleichungen sind alle von der Form +\begin{equation} +\biggl( +\frac{d y}{d u} +\biggr)^2 += +p(u), +\label{buch:elliptisch:eqn:allgdgl} +\end{equation} +wobei $p(u)$ ein Polynom vierten Grades in $y$ ist. +Diese Differentialgleichung lässt sich mit Separation lösen. +Dazu zieht man aus~\eqref{buch:elliptisch:eqn:allgdgl} die +Wurzel +\begin{align} +\frac{dy}{du} += +\sqrt{p(y)} +\notag +\intertext{und trennt die Variablen. Man erhält} +\int\frac{dy}{\sqrt{p(y)}} = u+C. +\label{buch:elliptisch:eqn:yintegral} +\end{align} +Solange $p(y)>0$ ist, ist der Integrand auf der linken Seite +von~\eqref{buch:elliptisch:eqn:yintegral} ebenfalls positiv und +das Integral ist eine monoton wachsende Funktion $F(y)$. +Insbesondere ist $F(y)$ invertierbar. +Die Lösung $y(u)$ der Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl} +ist daher +\[ +y(u) = F^{-1}(u+C). +\] +Die Jacobischen elliptischen Funktionen sind daher inverse Funktionen +der unvollständigen elliptischen Integrale. + +\begin{beispiel} +Die Differentialgleichung der Funktion $y=\operatorname{sn}(u,k)$ ist +\[ +(y')^2 += +(1-y^2)(1-k^2y^2). +\] +Aus \eqref{buch:elliptisch:eqn:yintegral} folgt daher, dass +\[ +u+C += +\int\frac{dy}{(1-y^2)(1-k^2y^2)}. +\] +Das Integral ist das unvollständige elliptische Integral erster Art. +Mit der Wahl der Konstanten $C$ so, dass $y(0)=0$ ist, ist +$y(u)=\operatorname{sn}(u,k)$ daher die Umkehrfunktion von +$y\mapsto F(y,k)=u$. +\end{beispiel} + +% +% Numerische Berechnung mit dem arithmetisch-geometrischen Mittel +% +\subsubsection{Numerische Berechnung mit dem arithmetisch-geometrischen Mittel +\label{buch:elliptisch:jacobi:agm}} +\begin{table} +\centering +\begin{tikzpicture}[>=latex,thick] + +\begin{scope}[xshift=-2.4cm,yshift=1.2cm] +\fill[color=red!20] + (-1.0,0) -- (-1.0,-2.1) -- (-1.8,-2.1) -- (0,-3.0) + -- (1.8,-2.1) -- (1.0,-2.1) -- (1.0,0) -- cycle; +\node[color=white] at (0,-1.2) [scale=7] {\sf 1}; +\end{scope} + +\begin{scope}[xshift=2.9cm,yshift=-1.8cm] +\fill[color=blue!20] + (0.8,0) -- (0.8,2.1) -- (1.4,2.1) -- (0,3.0) -- (-1.4,2.1) + -- (-0.8,2.1) -- (-0.8,0) -- cycle; +\node[color=white] at (0,1.2) [scale=7] {\sf 2}; +\end{scope} + +\node at (0,0) { +\begin{tabular}{|>{$}c<{$}|>{$}c<{$}>{$}c<{$}|>{$}c<{$}>{$}l<{$}|} +\hline +n & a_n & b_n & x_n & +\mathstrut\text{\vrule height12pt depth6pt width0pt}\\ +\hline +0 & 1.0000000000000000 & 0.4358898943540673 & 0.5422823228691580 & = \operatorname{sn}(u,k)% +\mathstrut\text{\vrule height12pt depth0pt width0pt}\\ +1 & 0.7179449471770336 & 0.6602195804079634 & 0.4157689781689663 & \mathstrut\\ +2 & 0.6890822637924985 & 0.6884775317911533 & 0.4017521410983242 & \mathstrut\\ +3 & 0.6887798977918259 & 0.6887798314243237 & 0.4016042867931862 & \mathstrut\\ +4 & 0.6887798646080748 & 0.6887798646080740 & 0.4016042705654757 & \mathstrut\\ +5 & 0.6887798646080744 & 0.6887798646080744 & 0.4016042705654755 & \mathstrut\\ +6 & & & 0.4016042705654755 & = \sin(a_5u) +\mathstrut\text{\vrule height0pt depth6pt width0pt}\\ +\hline +\end{tabular} +}; +\end{tikzpicture} +\caption{Berechnung von $\operatorname{sn}(u,k)$ für $u=0.6$ und $k=0.$2 +mit Hilfe des arithmetisch-geo\-me\-tri\-schen Mittels. +In der ersten Phase des Algorithmus (rot) wird die Folge der arithmetischen +\index{Algorithmus!arithmetisch-geometrisches Mittel}% +und geometrischen Mittel berechnet, in der zweiten Phase werden die +Approximationen von $x_0=\operatorname{sn}(u,k)$. +Bei $n=5$ erreicht die Iteration des arithmetisch-geometrischen Mittels +Maschinengenauigkeit, was sich auch darin äussert, dass sich $x_5$ und +$x_6=\sin(a_5u)$ nicht unterscheiden. +\label{buch:elliptisch:agm:table:snberechnung}} +\end{table} +In Abschnitt~\ref{buch:elliptisch:subsection:agm} auf +Seite~\pageref{buch:elliptisch:subsubection:berechnung-fxk-agm} +wurde erklärt, wie das unvollständige elliptische Integral $F(x,k)$ mit +Hilfe des arithmetisch-geometrischen Mittels berechnet werden kann. +\index{Algorithmus!arithmetisch-geometrisches Mittel}% +\index{arithmetisch-geometrisches Mittel!Algorithmus}% +Da $\operatorname{sn}^{-1}(x,k) = F(x,k)$ die Umkehrfunktion ist, kann +man den Algorithmus auch zur Berechnung von $\operatorname{sn}(u,k)$ +verwenden. +Dazu geht man wie folgt vor: +\begin{enumerate} +\item +$k'=\sqrt{1-k^2}$. +\item +Berechne die Folgen des arithmetisch-geometrischen Mittels +$a_n$ und $b_n$ mit $a_0=1$ und $b_0=k'$, bis zum Folgenindex $N$, +bei dem ausreichende Konvergenz eintegreten ist. +\item +Setze $x_N = \sin(a_N \cdot u)$. +\item +Berechnet für absteigende $n=N-1,N-2,\dots$ die Folge $x_n$ mit Hilfe +der Rekursionsformel +\begin{equation} +x_{n} += +\frac{2a_nx_{n+1}}{a_n+b_n+(a_n-b_n)x_{n+1}^2}, +\label{buch:elliptisch:agm:xnrek} +\end{equation} +die aus \eqref{buch:elliptisch:agm:subst} +durch die Substitution $x_n = \sin t_n$ entsteht. +\item +Setze $\operatorname{sn}(u,k) = x_0$. +\end{enumerate} +Da die Formel \eqref{buch:elliptisch:agm:xnrek} nicht unter den +numerischen Stabilitätsproblemen leidet, die früher auf +Seite~\pageref{buch:elliptisch:agm:ellintegral-stabilitaet} +diskutiert wurden, ist die Berechnung stabil und sehr schnell. +Tabelle~\ref{buch:elliptisch:agm:table:snberechnung} +zeigt die Berechnung am Beispiel $u=0.6$ und $k=0.2$. + +% +% Pole und Nullstellen der Jacobischen elliptischen Funktionen +% +\subsubsection{Pole und Nullstellen der Jacobischen elliptischen Funktionen} +\begin{figure} +\centering +\includegraphics{chapters/110-elliptisch/images/ellpolnul.pdf} +\caption{Werte der grundlegenden Jacobischen elliptischen Funktionen +$\operatorname{sn}(u,k)$, +$\operatorname{cn}(u,k)$ +und +$\operatorname{dn}(u,k)$ +in den Ecken des Rechtecks mit Ecken $(0,0)$ und $(K,K+iK')$. +Links der Definitionsbereich, rechts die Werte der drei Funktionen. +Pole sind mit einem Kreuz ($\times$) bezeichnet, Nullstellen mit einem +Kreis ($\ocircle$). +\label{buch:elliptisch:fig:ellpolnul}} +\end{figure} +\begin{figure} +\centering +\includegraphics{chapters/110-elliptisch/images/ellall.pdf} +\caption{Pole und Nullstellen aller Jacobischen elliptischen Funktionen +mit den gleichen Darstellungskonventionen wie in +Abbildung~\ref{buch:elliptisch:fig:ellpolnul} +\label{buch:elliptisch:fig:ellall}} +\end{figure} +\begin{figure} +\centering +\includegraphics{chapters/110-elliptisch/images/ellselection.pdf} +\caption{Auswahl einer Jacobischen elliptischen Funktion mit bestimmten +Nullstellen und Polen. +Nullstellen und Pole können in jeder der vier Ecken des fundamentalen +Rechtecks (gelb, oberer rechter Viertel des Periodenrechtecks) liegen. +Der erste Buchstabe des Namens der gesuchten Funktion ist der Buchstabe +der Ecke der Nullstelle, der zweite Buchstabe ist der Buchstabe der +Ecke des Poles. +Im Beispiel die Funktion $\operatorname{cd}(u,k)$, welche eine +Nullstelle in $K$ hat und einen Pol in $K+iK'$. +\label{buch:elliptisch:fig:selectell}} +\end{figure} +Für die Funktion $y=\operatorname{sn}(u,k)$ erfüllt die Differentialgleichung +\[ +\frac{dy}{du} += +\sqrt{(1-y^2)(1-k^2y^2)}, +\] +welche mit dem unbestimmten Integral +\begin{equation} +u + C = \int\frac{dy}{\sqrt{(1-y^2)(1-k^2y^2)}} +\label{buch:elliptisch:eqn:uyintegral} +\end{equation} +gelöst werden kann. +Der Wertebereich des Integrals in \eqref{buch:elliptisch:eqn:uyintegral} +wurde bereits in +Abschnitt~\ref{buch:elliptisch:subsection:unvollstintegral} +auf Seite~\pageref{buch:elliptische:subsubsection:wertebereich} +diskutiert. +Daraus können jetzt Nullstellen und Pole der Funktion $\operatorname{sn}(u,k)$ +und mit Hilfe von Tabelle~\ref{buch:elliptisch:fig:jacobi-relationen} +auch für $\operatorname{cn}(u,k)$ und $\operatorname{dn}(u,k)$ +abgelesen werden: +\begin{equation} +\begin{aligned} +\operatorname{sn}(0,k)&=0 +&&\qquad& +\operatorname{cn}(0,k)&=1 +&&\qquad& +\operatorname{dn}(0,k)&=1 +\\ +\operatorname{sn}(iK',k)&=\infty +&&\qquad& +\operatorname{cn}(iK',k)&=\infty +&&\qquad& +\operatorname{dn}(iK',k)&=\infty +\\ +\operatorname{sn}(K,k)&=1 +&&\qquad& +\operatorname{cn}(K,k)&=0 +&&\qquad& +\operatorname{dn}(K,k)&=k' +\\ +\operatorname{sn}(K+iK',k)&=\frac{1}{k} +&&\qquad& +\operatorname{cn}(K+iK',k)&=\frac{k'}{ik} +&&\qquad& +\operatorname{dn}(K+iK',k)&=0 +\end{aligned} +\label{buch:elliptische:eqn:eckwerte} +\end{equation} +Abbildung~\ref{buch:elliptisch:fig:ellpolnul} zeigt diese Werte +an einer schematischen Darstellung des Definitionsbereiches auf. +Daraus lassen sich jetzt auch die Werte der abgeleiteten Jacobischen +elliptischen Funktionen ablesen, Pole und Nullstellen sind in +Abbildung~\ref{buch:elliptisch:fig:ellall} +zusammengestellt. + + + + + +% +% Differentialgleichung des anharmonischen Oszillators +% +\subsubsection{Differentialgleichung des anharmonischen Oszillators} +Wir möchten die nichtlineare Differentialgleichung +\index{Differentialgleichung!das anharmonischen Oszillators}% +\begin{equation} +\biggl( +\frac{dx}{dt} +\biggr)^2 += +Ax^4+Bx^2 + C +\label{buch:elliptisch:eqn:anhdgl} +\end{equation} +mit Hilfe elliptischer Funktionen lösen. +Wir nehmen also an, dass die gesuchte Lösung eine Funktion der Form +\begin{equation} +x(t) = a\operatorname{zn}(bt,k) +\label{buch:elliptisch:eqn:loesungsansatz} +\end{equation} +ist. +Die erste Ableitung von $x(t)$ ist +\[ +\dot{x}(t) += +a\operatorname{zn}'(bt,k). +\] + +Indem wir diesen Lösungsansatz in die +Differentialgleichung~\eqref{buch:elliptisch:eqn:anhdgl} +einsetzen, erhalten wir +\begin{equation} +a^2b^2 \operatorname{zn}'(bt,k)^2 += +a^4A\operatorname{zn}(bt,k)^4 ++ +a^2B\operatorname{zn}(bt,k)^2 ++C +\label{buch:elliptisch:eqn:dglx} +\end{equation} +Andererseits wissen wir, dass $\operatorname{zn}(u,k)$ einer +Differentilgleichung der Form~\eqref{buch:elliptisch:eqn:1storderdglell} +erfüllt. +Wenn wir \eqref{buch:elliptisch:eqn:dglx} durch $a^2b^2$ teilen, können wir +die rechte Seite von \eqref{buch:elliptisch:eqn:dglx} mit der rechten +Seite von \eqref{buch:elliptisch:eqn:1storderdglell} vergleichen: +\[ +\frac{a^2A}{b^2}\operatorname{zn}(bt,k)^4 ++ +\frac{B}{b^2}\operatorname{zn}(bt,k)^2 ++\frac{C}{a^2b^2} += +\alpha\operatorname{zn}(bt,k)^4 ++ +\beta\operatorname{zn}(bt,k)^2 ++ +\gamma\operatorname{zn}(bt,k). +\] +Daraus ergeben sich die Gleichungen +\begin{align} +\alpha &= \frac{a^2A}{b^2}, +& +\beta &= \frac{B}{b^2} +&&\text{und} +& +\gamma &= \frac{C}{a^2b^2} +\label{buch:elliptisch:eqn:koeffvergl} +\intertext{oder aufgelöst nach den Koeffizienten der ursprünglichen +Differentialgleichung} +A&=\frac{\alpha b^2}{a^2} +& +B&=\beta b^2 +&&\text{und}& +C &= \gamma a^2b^2 +\label{buch:elliptisch:eqn:koeffABC} +\end{align} +für die Koeffizienten der Differentialgleichung der zu verwendenden +Funktion. + +Man beachte, dass nach \eqref{buch:elliptisch:eqn:koeffvergl} die +Koeffizienten $A$, $B$ und $C$ die gleichen Vorzeichen haben wie +$\alpha$, $\beta$ und $\gamma$, da in +\eqref{buch:elliptisch:eqn:koeffvergl} nur mit Quadraten multipliziert +wird, die immer positiv sind. +Diese Vorzeichen bestimmen, welche der Funktionen gewählt werden muss. + +In den Differentialgleichungen für die elliptischen Funktionen gibt +es nur den Parameter $k$, der angepasst werden kann. +Es folgt, dass die Gleichungen +\eqref{buch:elliptisch:eqn:koeffvergl} +auch $a$ und $b$ bestimmen. +Zum Beispiel folgt aus der letzten Gleichung, dass +\[ +b = \pm\sqrt{\frac{B}{\beta}}. +\] +Damit folgt dann aus der zweiten +\[ +a=\pm\sqrt{\frac{\beta C}{\gamma B}}. +\] +Die verbleibende Gleichung legt $k$ fest. +Das folgende Beispiel illustriert das Vorgehen am Beispiel einer +Gleichung, die Lösungsfunktion $\operatorname{sn}(u,k)$ verlangt. + +\begin{beispiel} +Wir nehmen an, dass die Vorzeichen von $A$, $B$ und $C$ gemäss +Tabelle~\ref{buch:elliptische:tabelle:loesungsfunktionen} verlangen, +dass die Funktion $\operatorname{sn}(u,k)$ für die Lösung verwendet +werden muss. +Die Tabelle sagt dann auch, dass +$\alpha=k^2$, $\beta=1$ und $\gamma=1$ gewählt werden müssen. +Aus dem Koeffizientenvergleich~\eqref{buch:elliptisch:eqn:koeffvergl} +folgt dann der Reihe nach +\begin{align*} +b&=\pm \sqrt{B} +\\ +a&=\pm \sqrt{\frac{C}{B}} +\\ +k^2 +&= +\frac{AC}{B^2}. +\end{align*} +Man beachte, dass man $k^2$ durch Einsetzen von +\eqref{buch:elliptisch:eqn:koeffABC} +auch direkt aus den Koeffizienten $\alpha$, $\beta$ und $\gamma$ +erhalten kann, nämlich +\[ +\frac{AC}{B^2} += +\frac{\frac{\alpha b^2}{a^2} \gamma a^2b^2}{\beta^2 b^4} += +\frac{\alpha\gamma}{\beta^2}. +\qedhere +\] +\end{beispiel} + +Da alle Parameter im +Lösungsansatz~\eqref{buch:elliptisch:eqn:loesungsansatz} bereits +festgelegt sind stellt sich die Frage, woher man einen weiteren +Parameter nehmen kann, mit dem Anfangsbedingungen erfüllen kann. +Die Differentialgleichung~\eqref{buch:elliptisch:eqn:anhdgl} ist +autonom, die Koeffizienten der rechten Seite der Differentialgleichung +sind nicht von der Zeit abhängig. +Damit ist eine zeitverschobene Funktion $x(t-t_0)$ ebenfalls eine +Lösung der Differentialgleichung. +Die allgmeine Lösung der +Differentialgleichung~\eqref{buch:elliptisch:eqn:anhdgl} hat +also die Form +\[ +x(t) = a\operatorname{zn}(b(t-t_0)), +\] +wobei die Funktion $\operatorname{zn}(u,k)$ auf Grund der Vorzeichen +von $A$, $B$ und $C$ gewählt werden müssen. + +Die Übungsaufgaben~\ref{buch:elliptisch:aufgabe:1} ist als +Lernaufgabe konzipiert, mit der die Lösung der Differentialgleichung +des harmonischen Oszillators beispielhaft durchgearbeitet +werden kann. diff --git a/buch/chapters/110-elliptisch/ellintegral.tex b/buch/chapters/110-elliptisch/ellintegral.tex index 46659cd..466aeb7 100644 --- a/buch/chapters/110-elliptisch/ellintegral.tex +++ b/buch/chapters/110-elliptisch/ellintegral.tex @@ -7,7 +7,7 @@ \label{buch:elliptisch:section:integral}} \rhead{Elliptisches Integral} Bei der Berechnung des Ellipsenbogens in -Abschnitt~\ref{buch:geometrie:subsection:hyperbeln-und-ellipsen} +Abschnitt~\ref{buch:geometrie:subsection:kegelschnitte} sind wir auf ein Integral gestossen, welches sich nicht in geschlossener Form ausdrücken liess. Um solche Integrale in den Griff zu bekommen, ist es nötig, sie als @@ -172,11 +172,193 @@ die {\em Jacobi-Normalform} heisst. \subsubsection{Vollständige elliptische Integrale als hypergeometrische Funktionen} -XXX Als hypergeometrische Funktionen \url{https://www.youtube.com/watch?v=j0t1yWrvKmE} \\ - +%XXX Als hypergeometrische Funktionen \url{https://www.youtube.com/watch?v=j0t1yWrvKmE} \\ +Das vollständige elliptische Integral $K(k)$ kann mit Hilfe der +Binomialreihe umgeformt werden in eine hypergeometrische Reihe. +Da im Integral nur $k^2$ auftaucht, wird sich $K(k)$ als +hypergeometrische Funktion von $k^2$ ausdrücken lassen. +\begin{satz} +\index{Satz!vollständiges elliptisches Integral als hypergeometrische Funktion}% +\label{buch:elliptisch:satz:hyperK} +Das vollständige elliptische Integral $K(k)$ lässt sich durch die +hypergeometrische Funktion $\mathstrut_2F_1$ als +\[ +K(k) += +\frac{\pi}2 +\cdot +\mathstrut_2F_1\biggl( +\begin{matrix}\frac12,\frac12\\1\end{matrix};1;k^2 +\biggr) +\] +ausdrücken. +\end{satz} +\begin{proof}[Beweis] +Zunächst ist das vollständige elliptische Integral in der Legendre-Form +\begin{align} +K(k) +&= +\int_0^{\frac{\pi}2} +\frac{d\vartheta}{\sqrt{1-k^2\sin^2\vartheta}} +%\notag +%\\ +%& += +\int_0^{\frac{\pi}2} +\bigl( +1-(k\sin\vartheta)^2 +\bigr)^{-\frac12}\,d\vartheta. +\notag +\intertext{Die Wurzel im letzten Integral kann mit Hilfe der binomischen +Reihe vereinfacht werden zu} +&= +\sum_{n=0}^\infty +(-1)^n k^2\binom{-\frac12}{n} +\int_0^{\frac{\pi}2} +\sin^{2n}\vartheta +\,d\vartheta. +\label{buch:elliptisch:beweis:ellharm2} +\end{align} +Der verallgemeinerte Binomialkoeffizient lässt sich nach +\begin{align*} +\binom{-\frac12}{n} +&= +\frac{(-\frac12)(-\frac32)(-\frac52)\cdot\ldots\cdot(-\frac12-n+1)}{n!} += +(-1)^n +\cdot +\frac{1}{n!} +\cdot +\frac12\cdot\frac32\cdot\frac52\cdot\ldots\cdot\biggl(\frac12+n-1\biggr) += +(-1)^n\frac{(\frac12)_n}{n!} +\end{align*} +vereinfachen. +Setzt man dies in \eqref{buch:elliptisch:beweis:ellharm2} ein, erhält +man +\begin{align*} +K(k) +&= +\sum_{n=0}^\infty +(-1)^n k^{2n} +\cdot +(-1)^n +\frac{(\frac12)_n}{n!} +\cdot +\int_0^{\frac{\pi}2} \sin^{2n}\vartheta\,d\vartheta += +\sum_{n=0}^\infty +\frac{(\frac12)_n}{n!} +\int_0^{\frac{\pi}2} \sin^{2n}\vartheta\,d\vartheta +\cdot (k^2)^n. +\end{align*} +Es muss jetzt also nur noch das Integral von $\sin^{2n}\vartheta$ +berechnet werden. +Mit partieller Integration kann man +\begin{align*} +\int \sin^m\vartheta\,d\vartheta +&= +\int +\underbrace{\sin \vartheta}_{\uparrow} +\underbrace{\sin^{m-1}\vartheta}_{\downarrow} +\,d\vartheta +\\ +&= +-\cos\vartheta\sin^{m-1}\vartheta ++ +\int \cos^2\vartheta (m-1)\sin^{m-2}\vartheta\,d\vartheta +\\ +&= +-\cos\vartheta \sin^{m-1}\vartheta ++ +(m-1) +\int +(1-\sin^2\vartheta) +\sin^{m-2}\vartheta\,d\vartheta. +\end{align*} +Wegen $\sin 0=0$ und +$\cos\frac{\pi}2=0$ verschwindet der erste Term im bestimmten Integral +und der zweite wird +\begin{align*} +\int_0^{\frac{\pi}2} +\sin^{m} \vartheta +\,d\vartheta +&= +(m-1) +\int_0^{\frac{\pi}2} +\sin^{m-2}\vartheta\,d\vartheta +- +(m-1) +\int_0^{\frac{\pi}2} +\sin^m \vartheta\,d\vartheta +\\ +m +\int_0^{\frac{\pi}2} +\sin^{m} \vartheta\,d\vartheta +&= +(m-1) +\int_0^{\frac{\pi}2} +\sin^{m-2} \vartheta\,d\vartheta +\\ +\int_0^{\frac{\pi}2} +\sin^{m} \vartheta\,d\vartheta +&= +\frac{m-1}{m} +\int_0^{\frac{\pi}2} +\sin^{m-2} \vartheta\,d\vartheta. +\end{align*} +Mit dieser Rekursionsformel kann jetzt das Integral berechnet werden. +Es folgt +\begin{align*} +\int_0^{\frac{\pi}2} +\sin^{2n}\vartheta\,d\vartheta +&= +\frac{2n-1}{2n} +\int_0^{\frac{\pi}2} +\sin^{2n-2}\vartheta\,d\vartheta +\\ +&= +\frac{2n-1}{2n} +\frac{2n-3}{2n-2} +\frac{2n-5}{2n-4} +\cdots +\frac{2n-(2n-1)}{2(n-1)} +\int_0^{\frac{\pi}2} +\sin^{2n-4}\vartheta\,d\vartheta +\\ +&= +\frac{ +(n-\frac12)(n-\frac32)(n-\frac52)\cdot\ldots\cdot\frac32\cdot\frac12 +}{ +n! +} +\int_0^{\frac{\pi}2} 1\,d\vartheta +\\ +&= +\frac{(\frac12)_n}{n!} +\cdot +\frac{\pi}2. +\end{align*} +Damit wird die Reihenentwicklung für $K(k)$ jetzt zu +\[ +K(k) += +\frac{\pi}2 +\sum_{n=0}^\infty +\frac{(\frac12)_n(\frac12)_n}{n!} \cdot \frac{(k^2)^n}{n!} += +\frac{\pi}2 +\cdot +\mathstrut_2F_1\biggl(\begin{matrix}\frac12,\frac12\\1\end{matrix};k^2\biggr), +\] +dies beweist die Behauptung. +\end{proof} +% +% Umfang einer Ellipse +% \subsubsection{Umfang einer Ellipse} \begin{figure} \centering @@ -247,13 +429,354 @@ Für den extremen Wert $\varepsilon=0$ entsteht der Umfang einer Ellipse, also $E(0)=\frac{\pi}2$. Für $\varepsilon=1$ ist $a=0$, es entsteht eine Strecke mit Länge $E(1)=1$. -\subsubsection{Komplementäre Integrale} +\begin{satz} +\label{buch:elliptisch:satz:hyperE} +Das vollständige elliptische Integral $E(k)$ ist +\[ +E(k) += +\int_0^{\frac{\pi}2} \sqrt{1-k^2\sin^2\vartheta}\,d\vartheta += +\frac{\pi}2 +\cdot +\mathstrut_2F_1\biggl( +\begin{matrix}-\frac12,\frac12\\1\end{matrix}; +k^2 +\biggr). +\] +\end{satz} + +\begin{proof}[Beweis] +Die Identität kann wie im Satz~\ref{buch:elliptisch:satz:hyperK} mit +Hilfe einer Entwicklung der Wurzel mit der Binomialreihe gefunden +werden. +\end{proof} + +Die Darstellung von $E(k)$ als hypergeometrische Reihe ermöglicht +jetzt zum Beispiel auch die Berechnung der Ableitung nach dem +Parameter $k$ mit der Ableitungsformel für die Funktion $\mathstrut_2F_1$. + + +% +% Berechnung mit dem arithmetisch-geometrischen Mittel +% +\subsection{Berechnung mit dem arithmetisch-geometrischen Mittel +\label{buch:elliptisch:subsection:agm}} +Die numerische Berechnung von elliptischer Integrale mit gewöhnlichen +numerischen Integrationsroutinen ist nicht sehr effizient. +Das in diesem Abschnitt vorgestellte arithmetisch-geometrische Mittel +\index{arithmetisch-geometrisches Mittel}% +liefert einen Algorithmus mit sehr viel besserer Konvergenz. +Die Methode lässt sich auch auf die unvollständigen elliptischen +Integrale von Abschnitt~\eqref{buch:elliptisch:subsection:unvollstintegral} +verallgemeinern. +Sie ist ein Speziallfall der sogenannten Landen-Transformation, +\index{Landen-Transformation}% +welche ausser für die elliptischen Integrale auch für die +Jacobischen elliptischen Funktionen formuliert werden kann und +für letztere ebenfalls sehr schnelle numerische Algorithmen liefert +(siehe dazu auch die +Aufgaben~\ref{buch:elliptisch:aufgabe:2}--\ref{buch:elliptisch:aufgabe:4}). +Sie kann auch verwendet werden, um die Werte der Jacobischen elliptischen +Funktionen für komplexe Argument zu berechnen. +Eine weiter Anwendung ist die Berechnung einer grossen Zahl von +Stellen der Kreiszahl $\pi$, siehe Aufgaben~\ref{buch:elliptisch:aufgabe:5}. + +% +% Das arithmetisch-geometrische Mittel +% +\subsubsection{Das arithmetisch-geometrische Mittel} +Seien $a$ und $b$ zwei nichtnegative reelle Zahlen. +Aus $a$ und $b$ werden jetzt zwei Folgen konstruiert, deren Glieder +durch +\begin{align*} +a_0&=a &&\text{und}& a_{n+1} &= \frac{a_n+b_n}2 &&\text{arithmetisches Mittel} +\\ +b_0&=b &&\text{und}& b_{n+1} &= \sqrt{a_nb_n} &&\text{geometrisches Mittel} +\end{align*} +definiert sind. + +\begin{satz} +\index{Satz!arithmetisch-geometrisches Mittel}% +Falls $a>b>0$ ist, nimmt die Folge $(a_k)_{k\ge 0}$ monoton ab und +$(b_k)_{k\ge 0}$ nimmt monoton zu. +Beide konvergieren quadratisch gegen einen gemeinsamen Grenzwert. +\end{satz} + +\begin{definition} +Der gemeinsame Grenzwert von $a_n$ und $b_n$ heisst das +{\em arithmetisch-geometrische Mittel} und wird mit +\[ +M(a,b) += +\lim_{n\to\infty} a_n += +\lim_{n\to\infty} b_n +\] +bezeichnet. +\index{arithmetisch-geometrisches Mittel}% +\end{definition} + +\begin{proof}[Beweis] +Zunächst ist zu zeigen, dass die Folgen monoton sind. +Dies folgt sofort aus der Definition der Folgen: +\begin{align*} +a_{n+1} &= \frac{a_n+b_n}{2} \ge \frac{a_n+a_n}{2} = a_n +\\ +b_{n+1} &= \sqrt{a_nb_n} \ge \sqrt{b_nb_n} = b_n. +\end{align*} +Die Konvergenz folgt aus +\[ +a_{n+1}-b_{n+1} +\le +a_{n+1}-b_n += +\frac{a_n+b_n}{2}-b_n += +\frac{a_n-b_n}2 +\le +\frac{a-b}{2^{n+1}}. +\] +Dies zeigt jedoch nur, dass die Konvergenz mindestens ein +Bit in jeder Iteration ist. +Aus +\[ +a_{n+1}^2 - b_{n+1}^2 += +\frac{(a_n+b_n)^2}{4} - a_nb_n += +\frac{a_n^2 -2a_nb_n+b_n^2}{4} += +\frac{(a_n-b_n)^2}{4} +\] +folgt +\[ +a_{n+1}-b_{n+1} += +\frac{(a_n-b_n)^2}{2(a_{n+1}+b_{n+1})}. +\] +Da der Nenner gegen $2M(a,b)$ konvergiert, wird der Fehler für in +jeder Iteration quadriert, die Zahl korrekter Stellen verdoppelt sich +in jeder Iteration, es liegt also quadratische Konvergenz vor. +\end{proof} -\subsubsection{Ableitung} -XXX Ableitung \\ -XXX Stammfunktion \\ +% +% Transformation des elliptischen Integrals +% +\subsubsection{Transformation des elliptischen Integrals} +In diesem Abschnitt soll das Integral +\[ +I(a,b) += +\int_0^{\frac{\pi}2} +\frac{dt}{\sqrt{a^2\cos^2 t + b^2\sin^2t}} +\] +berechnet werden. +Es ist klar, dass +\[ +I(sa,sb) += +\frac{1}{s} I(a,b). +\] -\subsection{Unvollständige elliptische Integrale} +Gauss hat gefunden, dass die Substitution +\begin{equation} +\sin t += +\frac{2a\sin t_1}{a+b+(a-b)\sin^2 t_1} +\label{buch:elliptisch:agm:subst} +\end{equation} +zu +\begin{equation} +\frac{dt}{\sqrt{a^2_{\phantom{1}}\cos^2 t + b^2_{\phantom{1}} \sin^2 t}} += +\frac{dt_1}{\sqrt{a_1^2\cos^2 t_1 + b_1^2 \sin^2 t_1}} +\label{buch:elliptisch:agm:dtdt1} +\end{equation} +führt. +Um dies nachzuprüfen, muss man zunächst +\eqref{buch:elliptisch:agm:subst} +nach $t_1$ ableiten, was +\[ +\frac{d}{dt_1}\sin t += +\cos t +\frac{dt}{dt_1} +\qquad\Rightarrow\qquad +\biggl( +\frac{d}{dt_1}\sin t +\biggr)^2 += +(1-\sin^2t)\biggl(\frac{dt}{dt_1}\biggr)^2 +\] +ergibt. +Die Ableitung von $t$ nach $t_1$ kann auch aus +\eqref{buch:elliptisch:agm:dtdt1} +ableiten, es ist +\[ +\biggl( +\frac{dt}{dt_1} +\biggr)^2 += +\frac{a^2_{\phantom{1}} \cos^2 t + b^2_{\phantom{1}} \sin^2 t}{a_1^2 \cos^2 t_1 + b_1^2 \sin^2 t_1}. +\] +Man muss also nachprüfen, dass +\begin{equation} +\frac{1}{1-\sin^2 t} +\frac{d}{dt_1}\sin t += +\frac{a^2 \cos^2 t + b^2 \sin^2 t}{a_1^2 \cos^2 t_1 + b_1^2 \sin^2 t_1}. +\label{buch:elliptisch:agm:deq} +\end{equation} +Dazu muss man zunächst $a_1=(a+b)/2$, $b_1=\!\sqrt{ab}$ setzen. +Ausserdem muss man $\cos^2 t$ durch $1-\sin^2t$ ersetzen und +$\sin t$ durch \eqref{buch:elliptisch:agm:subst}. +Auch $\cos^2 t_1$ muss man durch $1-\sin^2t_1$ ersetzt werden. +Dann kann man nach einer langwierigen Rechnung, die sich am leichtesten +mit einem Computer-Algebra-System ausführen lässt finden, dass +\eqref{buch:elliptisch:agm:deq} +tatsächlich korrekt ist. + +\begin{satz} +\index{Satz!Gauss-Integrale}% +\label{buch:elliptisch:agm:integrale} +Für $a_1=(a+b)/2$ und $b_1=\sqrt{ab}$ gilt +\[ +\int_0^{\frac{\pi}2} +\frac{dt}{a^2\cos^2 t + b^2 \sin^2 t} += +\int_0^{\frac{\pi}2} +\frac{dt_1}{a_1^2\cos^2 t_1 + b_1^2 \sin^2 t_1}. +\] +\end{satz} + +Der Satz~\ref{buch:elliptisch:agm:integrale} zeigt, dass die Ersetzung +von $a$ und $b$ durch $a_1$ und $b_1$ das Integral $I(a,b)$ nicht ändert. +Dies gilt natürlich für alle Glieder der Folge zur Bestimmung des +arithmetisch-geometrischen Mittels. + +\begin{satz} +\index{Satz!Iab@$I(a,b)$ und arithmetisch geometrisches Mittel}% +Für $a\ge b>0$ gilt +\begin{equation} +I(a,b) += +\int_0^{\frac{\pi}2} +\frac{dt}{a^2\cos^2 t + b^2\sin^2t} += +\frac{\pi}{2M(a,b)} +\end{equation} +\end{satz} + +\begin{proof}[Beweis] +Zunächst folgt aus Satz~\ref{buch:elliptisch:agm:integrale}, dass +\[ +I(a,b) += +I(a_1,b_1) += +\dots += +I(a_n,b_n). +\] +Ausserdem ist $a_n\to M(a,b)$ und $b_n\to M(a,b)$, +damit wird +\[ +I(a,b) += +\frac{1}{M(a,b)} +\int_0^{\frac{\pi}2} +\frac{dt}{\sqrt{\cos^2 t + \sin^2 t}} += +\frac{\pi}{2M(a,b)}. +\qedhere +\] +\end{proof} + +% +% Berechnung des elliptischen Integrals +% +\subsubsection{Berechnung des elliptischen Integrals} +Das elliptische Integral erster Art hat eine Form, die dem Integral +$I(a,b)$ bereits sehr ähnlich ist. +Im die Verbindung herzustellen, berechnen wir +\begin{align*} +I(a,b) +&= +\int_0^{\frac{\pi}2} +\frac{dt}{\sqrt{a^2\cos^2 t + b^2 \sin^2 t}} +\\ +&= +\frac{1}{a} +\int_0^{\frac{\pi}2} +\frac{dt}{\sqrt{1-\sin^2 t + \frac{b^2}{a^2} \sin^2 t}} +\\ +&= +\frac{1}{a} +\int_0^{\frac{\pi}2} +\frac{dt}{\sqrt{1-(1-\frac{b^2}{a^2})\sin^2 t}} += +K(k) +\qquad\text{mit}\qquad +k'=\frac{b^2}{a^2},\; +k=\sqrt{1-k^{\prime 2}} +\end{align*} + +\begin{satz} +\index{Satz!vollständige elliptische Integrale und arithmetisch-geometrisches Mittel}% +\label{buch:elliptisch:agm:satz:Ek} +Für $0<k\le 1$ ist +\[ +K(k) = I(1,\sqrt{1-k^2}) = \frac{\pi}{2M(1,\sqrt{1-k^2})} +\] +\end{satz} + +% +% Numerisches Beispiel +% +\subsubsection{Numerisches Beispiel} +\begin{table} +\centering +\begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} +\hline +n& a_n & b_n & \pi/2a_n \mathstrut\text{\vrule height12pt depth6pt width0pt}\\ +\hline +\text{\vrule height12pt depth0pt width0pt}% +0 & 1.0000000000000000000 & 0.7071067811865475243 & 1.5707963267948965579 \\ +1 & 0.8535533905932737621 & 0.8408964152537145430 & 1.\underline{8}403023690212201581 \\ +2 & 0.8472249029234941526 & 0.8472012667468914603 & 1.\underline{8540}488143993356315 \\ +3 & 0.8472130848351928064 & 0.8472130847527653666 & 1.\underline{854074677}2111781089 \\ +4 & 0.8472130847939790865 & 0.8472130847939790865 & 1.\underline{854074677301371}8463 \\ +\infty& & & 1.8540746773013719184% +\text{\vrule height12pt depth6pt width0pt}\\ +\hline +\end{tabular} +\caption{Die Berechnung des arithmetisch-geometrischen Mittels für +$a=1$ und $b=\sqrt{2}/2$ zeigt die sehr rasche Konvergenz. +\label{buch:elliptisch:agm:numerisch}} +\end{table} +In diesem Abschnitt soll als Zahlenbeispiel $E(k)$ für $k=\sqrt{2}/2$ +berechnet werden. +In diesem speziellen Fall ist $k'=k$. +Tabelle~\ref{buch:elliptisch:agm:numerisch} zeigt die sehr rasche +Konvergenz der Berechnung des arithmetisch-geometrischen Mittels +von $1$ und $\sqrt{2}/2$. +Mit Satz~\ref{buch:elliptisch:agm:satz:Ek} folgt jetzt +\[ +K(\!\sqrt{2}/2) += +\frac{\pi}{2M(1,\!\sqrt{2}/2)} += +1.854074677301372. +\] +Die Berechnung hat nur 4 Mittelwerte, 4 Produkte, 4 Quadratwurzeln und +eine Division erfordert. + +% +% Unvollständige elliptische Integrale +% +\subsection{Unvollständige elliptische Integrale +\label{buch:elliptisch:subsection:unvollstintegral}} Die Funktionen $K(k)$ und $E(k)$ sind als bestimmte Integrale über ein festes Intervall definiert. Die {\em unvollständigen elliptischen Integrale} entstehen, indem die @@ -318,12 +841,18 @@ Die Abbildung~\ref{buch:elliptisch:fig:unvollstaendigeintegrale} zeigt Graphen der unvollständigen elliptischen Integrale für verschiedene Werte des Parameters. +% +% Symmetrieeigenschaften +% \subsubsection{Symmetrieeigenschaften} Die Integranden aller drei unvollständigen elliptischen Integrale sind gerade Funktionen der reellen Variablen $t$. Die Funktionen $F(x,k)$, $E(x,k)$ und $\Pi(n,x,k)$ sind daher ungeraden Funktionen von $x$. +% +% Elliptische Integrale als komplexe Funktionen +% \subsubsection{Elliptische Integrale als komplexe Funktionen} Die unvollständigen elliptischen Integrale $F(x,k)$, $F(x,k)$ und $\Pi(n,x,k)$ in Jacobi-Form lassen sich auch für komplexe Argumente interpretieren. @@ -334,10 +863,14 @@ Die Faktoren, die in den Integranden der unvollständigen elliptischen Integrale vorkommen, haben Nullstellen bei $\pm1$, $\pm1/k$ und $\pm 1/\sqrt{n}$ -XXX Additionstheoreme \\ -XXX Parameterkonventionen \\ +% XXX Additionstheoreme \\ +% XXX Parameterkonventionen \\ +% +% Wertebereich +% \subsubsection{Wertebereich} +\label{buch:elliptische:subsubsection:wertebereich} Die unvollständigen elliptischen Integrale betrachtet als reelle Funktionen haben nur positive relle Werte. Zum Beispiel nimmt das unvollständige elliptische Integral erster Art @@ -427,6 +960,9 @@ l({\textstyle\frac{1}{k}})=\int_1^{\frac1{k}} \end{equation} ausgewertet werden. +% +% Komplementärmodul +% \subsubsection{Komplementärmodul} Im vorangegangen Abschnitt wurde gezeigt, dass der Wertebereicht des unvollständigen elliptischen Integrals der ersten Art als komplexe @@ -447,7 +983,7 @@ werden, dass $1-k'^2=k^2$ ist. \begin{definition} Ist $0\le k\le 1$ der Modul eines elliptischen Integrals, dann heisst -$k' = \sqrt{1-k^2}$ er {\em Komplementärmodul} oder {\em Komplement +$k' = \sqrt{1-k^2}$ der {\em Komplementärmodul} oder {\em Komplement des Moduls}. Es ist $k^2+k'^2=1$. \end{definition} @@ -530,6 +1066,9 @@ in das blaue. \label{buch:elliptisch:fig:rechteck}} \end{figure} +% +% Reelle Argument > 1/k +% \subsubsection{Reelle Argument $> 1/k$} Für Argument $x> 1/k$ sind beide Faktoren im Integranden des unvollständigen elliptischen Integrals negativ, das Integral kann @@ -576,7 +1115,141 @@ F(x,k) = iK(k') - F\biggl(\frac1{kx},k\biggr) für die Werte des elliptischen Integrals erster Art für grosse Argumentwerte fest. -\subsection{Potenzreihe} -XXX Potenzreihen \\ -XXX Als hypergeometrische Funktionen \url{https://www.youtube.com/watch?v=j0t1yWrvKmE} \\ -XXX Berechnung mit der Landen-Transformation https://en.wikipedia.org/wiki/Landen%27s_transformation +% +% AGM und Berechnung von F(x,k) +% +\subsubsection{Berechnung von $F(x,k)$ mit dem arithmetisch-geometrischen +Mittel\label{buch:elliptisch:subsubection:berechnung-fxk-agm}} +Wie das vollständige elliptische Integral $K(k)$ kann auch das +unvollständige elliptische Integral +\begin{align*} +F(x,k) +&= +\int_0^x \frac{d\xi}{\sqrt{(1-\xi^2)(1-k^{\prime 2}\xi^2)}} += +\int_0^{\varphi} +\frac{dt}{\sqrt{1-k^2 \sin^2 t}} +&&\text{mit $x=\sin\varphi$} +\\ +&= +a +\int_0^{\varphi} \frac{dt}{a^2 \cos^2 t + b^2 \sin^2 t} +&&\text{mit $k=b/a$} +\end{align*} +mit dem arithmetisch-geometrischen Mittel berechnet werden. +Dazu muss die Substitution +\eqref{buch:elliptisch:agm:subst} +verwendet werden, um auch den Winkel $\varphi_1$ zu berechnen. +Zunächst wird \eqref{buch:elliptisch:agm:subst} nach $x_1=\sin t_1$ +aufgelöst. +Durch Multiplikation mit dem Nenner erhält man mit der Abkürzung +$x=\sin t$ %und $x_1=\sin t_1$ +die quadratische Gleichung +\[ +(a-b)x x_1^2 +- +2ax_1 ++ +(a+b)x += +0, +\] +mit der Lösung +\begin{equation} +x_1 += +\frac{a-\sqrt{a^2-(a^2-b^2)x^2}}{(a-b)x}. +\label{buch:elliptisch:unvollstagm:xrek} +\end{equation} +Der Algorithmus zur Berechnung des arithmetisch-geometrischen Mittels +muss daher verallgemeinert werden zu +\begin{equation} +\left. +\begin{aligned} +a_{n+1} &= \frac{a_n+b_n}2, &\qquad a_0 &= a +\\ +b_{n+1} &= \sqrt{a_nb_n}, & b_0 &= b +\\ +x_{n+1} &= \frac{a_n-\sqrt{a_n^2-(a_n^2-b_n^2)x_n^2}}{(a_n-b_n)x_n}, & x_0 &= x +\end{aligned} +\quad +\right\} +\label{buch:elliptisch:unvollstagm:rek} +\end{equation} +Die Folge $x_n$ konvergiert gegen einen Wert $x_{\infty} = \lim_{n\to\infty} x_n$. +Der Wert des unvollständigen elliptischen Integrals ist dann der Grenzwert +\[ +F(x,k) += +\lim_{n\to\infty} +\frac{\arcsin x_n}{M(a_n,b_n)} += +\frac{\arcsin x_{\infty}}{M(1,\sqrt{1-k^2})}. +\] + +In dieser Form ist die Berechnung allerdings nicht praktisch durchführbar. +Das Problem ist, dass die Differenz $a_n-b_n$, die in +\eqref{buch:elliptisch:unvollstagm:rek} +im Nenner vorkommt, sehr schnell gegen Null geht. +Ausserdem ist die Quadratwurzel im Zähler fast gleich gross wie +$a_n$, was zu Auslöschung und damit ungenauen Resultaten führt. +\label{buch:elliptisch:agm:ellintegral-stabilitaet} + +Eine Möglichkeit, das Problem zu entschärfen, ist, die Rekursionsformel +nach $\varepsilon = a-b$ zu entwickeln. +Mit $a+b=2a+\varepsilon$ kann man $b$ aus der Formel elimineren und erhält +mit Hilfe der binomischen Reihe +\begin{align*} +x_1 +&= +\frac{a}{x\varepsilon} +\left(1-\sqrt{1-\varepsilon(2a-\varepsilon)x^2/a^2}\right) +\\ +&= +\frac{a}{x\varepsilon} +\biggl( +1-\sum_{k=0}^\infty +(-1)^k +\frac{(\frac12)_k}{k!} \varepsilon^k(2a-\varepsilon)^k\frac{x^{2k}}{a^{2k}} +\biggr) +\\ +&= +\sum_{k=1}^\infty +(-1)^{k-1} +\frac{(\frac12)_k}{k!} \varepsilon^{k-1}(2a-\varepsilon)^k\frac{x^{2k-1}}{a^{2k-1}} +\\ +&= +\frac{\frac12}{1!}(2a-\varepsilon)\frac{x}{a} +- +\frac{\frac12\cdot(\frac12-1)}{2!}\varepsilon(2a-\varepsilon)^2\frac{x^3}{a^3} ++ +\frac{\frac12\cdot(\frac12-1)(\frac12-2)}{3!}\varepsilon^2(2a-\varepsilon)^3\frac{x^5}{a^5} +- +\dots +\\ +&= +x\biggl(1-\frac{\varepsilon}{2a}\biggr) +\biggl( +1 +- +\frac{\frac12-1}{2!}\varepsilon(2a-\varepsilon)\frac{x^2}{a^2} ++ +\frac{(\frac12-1)(\frac12-2)}{3!}\varepsilon^2(2a-\varepsilon)^2\frac{x^4}{a^4} +- +\dots +\biggr) +\\ +&= +x\biggl(1-\frac{\varepsilon}{2a}\biggr) +\cdot +\mathstrut_2F_1\biggl( +\begin{matrix}-\frac12,1\\2\end{matrix};-\varepsilon(2a-\varepsilon)\frac{x^2}{a^2} +\biggr). +\end{align*} +Diese Form ist wesentlich besser, aber leider kann es bei der numerischen +Rechnung passieren, dass $\varepsilon < 0$ wird. + +%\subsection{Potenzreihe} +%XXX Potenzreihen \\ +%XXX Als hypergeometrische Funktionen \url{https://www.youtube.com/watch?v=j0t1yWrvKmE} \\ +%XXX Berechnung mit der Landen-Transformation https://en.wikipedia.org/wiki/Landen%27s_transformation diff --git a/buch/chapters/110-elliptisch/elltrigo.tex b/buch/chapters/110-elliptisch/elltrigo.tex new file mode 100644 index 0000000..49e6686 --- /dev/null +++ b/buch/chapters/110-elliptisch/elltrigo.tex @@ -0,0 +1,1076 @@ +% +% elltrigo.tex +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% + +% +% elliptische Funktionen als Trigonometrie +% +\subsection{Elliptische Funktionen als Trigonometrie} +\begin{figure} +\centering +\includegraphics{chapters/110-elliptisch/images/ellipse.pdf} +\caption{Kreis und Ellipse zum Vergleich und zur Herleitung der +elliptischen Funktionen von Jacobi als ``trigonometrische'' Funktionen +auf einer Ellipse. +\label{buch:elliptisch:fig:ellipse}} +\end{figure} +% based on Willliam Schwalm, Elliptic functions and elliptic integrals +% https://youtu.be/DCXItCajCyo +Die Ellipse wurde in Abschnitt~\ref{buch:geometrie:subsection:kegelschnitte} +als Kegelschnitt erkannt und auf verschiedene Arten parametrisiert. +In diesem Abschnitt soll gezeigt werden, wie man die Parametrisierung +eines Kreises mit trigonometrischen Funktionen verallgemeinern kann +auf eine Parametrisierung einer Ellipse mit den drei +Funktionen $\operatorname{sn}(u,k)$, +$\operatorname{cn}(u,k)$ und $\operatorname{dn}(u,k)$, +die ähnliche Eigenschaften haben wie die trigonometrischen Funktionen. + +Die nachstehende Darstellung ist stark inspiriert von William Schwalms +sehr zielorientierten Einführung +\cite{buch:schwalm}, welche auch als Youtube-Videovorlesung +\cite{buch:schwalm-youtube} zur Verfügung steht. + +% +% Geometrie einer Ellipse +% +\subsubsection{Geometrie einer Ellipse} +Eine {\em Ellipse} ist die Menge der Punkte der Ebene, für die die Summe +\index{Ellipse}% +der Entfernungen von zwei festen Punkten $F_1$ und $F_2$, +den {\em Brennpunkten}, konstant ist. +\index{Brennpunkt}% +In Abbildung~\ref{buch:elliptisch:fig:ellipse} eine Ellipse +mit Brennpunkten in $F_1=(-e,0)$ und $F_2=(e,0)$ dargestellt, +die durch die Punkte $(\pm a,0)$ und $(0,\pm b)$ auf den Achsen geht. +Der Punkt $(a,0)$ hat die Entfernungen $a+e$ und $a-e$ von den beiden +Brennpunkten, also die Entfernungssumme $a+e+a-e=2a$. +Jeder andere Punkt auf der Ellipse muss ebenfalls diese Entfernungssumme +haben, insbesondere auch der Punkt $(0,b)$. +Seine Entfernung zu jedem Brennpunkt muss aus Symmetriegründen gleich gross, +also $a$ sein. +Aus dem Satz von Pythagoras liest man daher ab, dass +\[ +b^2+e^2=a^2 +\qquad\Rightarrow\qquad +e^2 = a^2-b^2 +\] +sein muss. +Die Strecke $e$ heisst auch {\em (lineare) Exzentrizität} der Ellipse. +Das Verhältnis $\varepsilon= e/a$ heisst die {\em numerische Exzentrizität} +der Ellipse. + +% +% Die Ellipsengleichung +% +\subsubsection{Ellipsengleichung} +Der Punkt $P=(x,y)$ auf der Ellipse hat die Entfernungen +\begin{equation} +\begin{aligned} +\overline{PF_1}^2 +&= +y^2 + (x+e)^2 +\\ +\overline{PF_2}^2 +&= +y^2 + (x-e)^2 +\end{aligned} +\label{buch:elliptisch:eqn:wurzelausdruecke} +\end{equation} +von den Brennpunkten, für die +\begin{equation} +\overline{PF_1}+\overline{PF_2} += +2a +\label{buch:elliptisch:eqn:pf1pf2a} +\end{equation} +gelten muss. +Man kann nachrechnen, dass ein Punkt $P$, der die Gleichung +\[ +\frac{x^2}{a^2} + \frac{y^2}{b^2}=1 +\] +erfüllt, auch die Eigenschaft~\eqref{buch:elliptisch:eqn:pf1pf2a} +erfüllt. +Zur Vereinfachung setzen wir $l_1=\overline{PF_1}$ und $l_2=\overline{PF_2}$. +$l_1$ und $l_2$ sind Wurzeln aus der rechten Seite von +\eqref{buch:elliptisch:eqn:wurzelausdruecke}. +Das Quadrat von $l_1+l_2$ ist +\[ +l_1^2 + 2l_1l_2 + l_2^2 = 4a^2. +\] +Um die Wurzeln ganz zu eliminieren, bringt man das Produkt $l_1l_2$ alleine +auf die rechte Seite und quadriert. +Man muss also verifizieren, dass +\[ +(l_1^2 + l_2^2 -4a^2)^2 = 4l_1^2l_2^2. +\] +In den entstehenden Ausdrücken muss man ausserdem $e=\sqrt{a^2-b^2}$ und +\[ +y=b\sqrt{1-\frac{x^2}{a^2}} +\] +substituieren. +Diese Rechnung führt man am einfachsten mit Hilfe eines +Computeralgebraprogramms durch, welches obige Behauptung bestätigt. + +% +% Normierung +% +\subsubsection{Normierung} +Die trigonometrischen Funktionen sind definiert als Verhältnisse +von Seiten rechtwinkliger Dreiecke. +Dadurch, dass man den die Hypothenuse auf Länge $1$ normiert, +kann man die Sinus- und Kosinus-Funktion als Koordinaten eines +Punktes auf dem Einheitskreis interpretieren. + +Für die Koordinaten eines Punktes auf der Ellipse ist dies nicht so einfach, +weil es nicht nur eine Ellipse gibt, sondern für jede numerische Exzentrizität +mindestens eine mit Halbachse $1$. +Wir wählen die Ellipsen so, dass $a$ die grosse Halbachse ist, also $a>b$. +Als Normierungsbedingung verwenden wir, dass $b=1$ sein soll, wie in +Abbildung~\ref{buch:elliptisch:fig:jacobidef}. +Dann ist $a=1/\varepsilon>1$. +In dieser Normierung haben Punkte $(x,y)$ auf der Ellipse $y$-Koordinaten +zwischen $-1$ und $1$ und $x$-Koordinaten zwischen $-a$ und $a$. + +Im Zusammenhang mit elliptischen Funktionen wird die numerische Exzentrizität +$\varepsilon$ auch mit +\[ +k += +\varepsilon += +\frac{e}{a} += +\frac{\sqrt{a^2-b^2}}{a} += +\frac{\sqrt{a^2-1}}{a}, +\] +die Zahl $k$ heisst auch der {\em Modulus}. +Man kann $a$ auch durch $k$ ausdrücken, durch Quadrieren und Umstellen +findet man +\[ +k^2a^2 = a^2-1 +\quad\Rightarrow\quad +1=a^2(k^2-1) +\quad\Rightarrow\quad +a=\frac{1}{\sqrt{k^2-1}}. +\] + +Die Gleichung der ``Einheitsellipse'' zu diesem Modulus ist +\[ +\frac{x^2}{a^2}+y^2=1 +\qquad\text{oder}\qquad +x^2(k^2-1) + y^2 = 1. +\] + +% +% Definition der elliptischen Funktionen +% +\begin{figure} +\centering +\includegraphics{chapters/110-elliptisch/images/jacobidef.pdf} +\caption{Definition der elliptischen Funktionen als Trigonometrie +an einer Ellipse mit Halbachsen $a$ und $1$. +\label{buch:elliptisch:fig:jacobidef}} +\end{figure} +\subsubsection{Definition der Jacobischen elliptischen Funktionen} +Die elliptischen Funktionen für einen Punkt $P$ auf der Ellipse mit Modulus $k$ +können jetzt als Verhältnisse der Koordinaten des Punktes definieren. +Es stellt sich aber die Frage, was man als Argument verwenden soll. +Es soll so etwas wie den Winkel $\varphi$ zwischen der $x$-Achse und dem +Radiusvektor zum Punkt $P$ +darstellen, aber wir haben hier noch eine Wahlfreiheit, die wir später +ausnützen möchten. +Im Moment müssen wir die Frage noch nicht beantworten und nennen das +noch unbestimmte Argument $u$. +Wir kümmern uns später um die Frage, wie $u$ von $\varphi$ abhängt. + +Die Funktionen, die wir definieren wollen, hängen ausserdem auch +vom Modulus ab. +Falls der verwendete Modulus aus dem Zusammenhang klar ist, lassen +wir das $k$-Argument weg. + +Die Punkte auf dem Einheitskreis haben alle den gleichen Abstand vom +Nullpunkt, dies ist gleichzeitig die definierende Gleichung $r^2=x^2+y^2=1$ +des Kreises. +Die Punkte auf der Ellipse erfüllen die Gleichung $x^2/a^2+y^2=1$, +die Entfernung der Punkte $r=\sqrt{x^2+y^2}$ vom Nullpunkt variert aber. + +In Analogie zu den trigonometrischen Funktionen setzen wir jetzt für +die Funktionen +\[ +\begin{aligned} +&\text{sinus amplitudinis:}& +{\color{red}\operatorname{sn}(u,k)}&= y \\ +&\text{cosinus amplitudinis:}& +{\color{blue}\operatorname{cn}(u,k)}&= \frac{x}{a} \\ +&\text{delta amplitudinis:}& +{\color{darkgreen}\operatorname{dn}(u,k)}&=\frac{r}{a}, +\end{aligned} +\] +die auch in Abbildung~\ref{buch:elliptisch:fig:jacobidef} +dargestellt sind. +Aus der Gleichung der Ellipse folgt sofort, dass +\[ +\operatorname{sn}(u,k)^2 + \operatorname{cn}(u,k)^2 = 1 +\] +ist. +Der Satz von Pythagoras kann verwendet werden, um die Entfernung zu +berechnen, also gilt +\begin{equation} +r^2 += +a^2 \operatorname{dn}(u,k)^2 += +x^2 + y^2 += +a^2\operatorname{cn}(u,k)^2 + \operatorname{sn}(u,k)^2 +\quad +\Rightarrow +\quad +a^2 \operatorname{dn}(u,k)^2 += +a^2\operatorname{cn}(u,k)^2 + \operatorname{sn}(u,k)^2. +\label{buch:elliptisch:eqn:sncndnrelation} +\end{equation} +Ersetzt man +$ +a^2\operatorname{cn}(u,k)^2 += +a^2-a^2\operatorname{sn}(u,k)^2 +$, ergibt sich +\[ +a^2 \operatorname{dn}(u,k)^2 += +a^2-a^2\operatorname{sn}(u,k)^2 ++ +\operatorname{sn}(u,k)^2 +\quad +\Rightarrow +\quad +\operatorname{dn}(u,k)^2 ++ +\frac{a^2-1}{a^2}\operatorname{sn}(u,k)^2 += +1, +\] +woraus sich die Identität +\[ +\operatorname{dn}(u,k)^2 + k^2 \operatorname{sn}(u,k)^2 = 1 +\] +ergibt. +Ebenso kann man aus~\eqref{buch:elliptisch:eqn:sncndnrelation} +die Funktion $\operatorname{cn}(u,k)$ eliminieren, was auf +\[ +a^2\operatorname{dn}(u,k)^2 += +a^2\operatorname{cn}(u,k)^2 ++1-\operatorname{cn}(u,k)^2 += +(a^2-1)\operatorname{cn}(u,k)^2 ++1. +\] +Nach Division durch $a^2$ ergibt sich +\begin{align*} +\operatorname{dn}(u,k)^2 +- +k^2\operatorname{cn}(u,k)^2 +&= +\frac{1}{a^2} += +\frac{a^2-a^2+1}{a^2} += +1-k^2 =: k^{\prime 2}. +\end{align*} +Wir stellen die hiermit gefundenen Relationen zwischen den grundlegenden +Jacobischen elliptischen Funktionen für später zusammen in den Formeln +\begin{equation} +\begin{aligned} +\operatorname{sn}^2(u,k) ++ +\operatorname{cn}^2(u,k) +&= +1 +\\ +\operatorname{dn}^2(u,k) + k^2\operatorname{sn}^2(u,k) +&= +1 +\\ +\operatorname{dn}^2(u,k) -k^2\operatorname{cn}^2(u,k) +&= +k^{\prime 2}. +\end{aligned} +\label{buch:elliptisch:eqn:jacobi-relationen} +\end{equation} +zusammen. +So wie es möglich ist, $\sin\alpha$ durch $\cos\alpha$ auszudrücken, +ist es mit +\eqref{buch:elliptisch:eqn:jacobi-relationen} +jetzt auch möglich jede grundlegende elliptische Funktion durch +jede anderen auszudrücken. +Die Resultate sind in der Tabelle~\ref{buch:elliptisch:fig:jacobi-relationen} +zusammengestellt. + +\begin{table} +\centering +\renewcommand{\arraystretch}{2.1} +\begin{tabular}{|>{$\displaystyle}c<{$}|>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}|} +\hline +&\operatorname{sn}(u,k) +&\operatorname{cn}(u,k) +&\operatorname{dn}(u,k)\\ +\hline +\operatorname{sn}(u,k) +&\operatorname{sn}(u,k) +&\sqrt{1-\operatorname{cn}^2(u,k)} +&\frac1k\sqrt{1-\operatorname{dn}^2(u,k)} +\\ +\operatorname{cn}(u,k) +&\sqrt{1-\operatorname{sn}^2(u,k)} +&\operatorname{cn}(u,k) +&\frac{1}{k}\sqrt{\operatorname{dn}^2(u,k)-k^{\prime2}} +\\ +\operatorname{dn}(u,k) +&\sqrt{1-k^2\operatorname{sn}^2(u,k)} +&\sqrt{k^{\prime2}+k^2\operatorname{cn}^2(u,k)} +&\operatorname{dn}(u,k) +\\ +\hline +\end{tabular} +\caption{Jede der Jacobischen elliptischen Funktionen lässt sich +unter Verwendung der Relationen~\eqref{buch:elliptisch:eqn:jacobi-relationen} +durch jede andere ausdrücken. +\label{buch:elliptisch:fig:jacobi-relationen}} +\end{table} + +% +% Ableitungen der Jacobi-ellpitischen Funktionen +% +\subsubsection{Ableitung} +Die trigonometrischen Funktionen sind deshalb so besonders nützlich +für die Lösung von Schwingungsdifferentialgleichungen, weil sie die +Beziehungen +\[ +\frac{d}{d\varphi} \cos\varphi = -\sin\varphi +\qquad\text{und}\qquad +\frac{d}{d\varphi} \sin\varphi = \cos\varphi +\] +erfüllen. +So einfach können die Beziehungen natürlich nicht sein, sonst würde sich +durch Integration ja wieder nur die trigonometrischen Funktionen ergeben. +Durch geschickte Wahl des Arguments $u$ kann man aber erreichen, dass +sie ähnlich nützliche Beziehungen zwischen den Ableitungen ergeben. + +Gesucht ist jetzt also eine Wahl für das Argument $u$ zum Beispiel in +Abhängigkeit von $\varphi$, dass sich einfache und nützliche +Ableitungsformeln ergeben. +Wir setzen daher $u(\varphi)$ voraus und beachten, dass $x$ und $y$ +ebenfalls von $\varphi$ abhängen, es ist +$y=\sin\varphi$ und $x=a\cos\varphi$. +Die Ableitungen von $x$ und $y$ nach $\varphi$ sind +\begin{align*} +\frac{dy}{d\varphi} +&= +\cos\varphi += +\frac{1}{a} x += +\operatorname{cn}(u,k) +\\ +\frac{dx}{d\varphi} +&= +-a\sin\varphi += +-a y += +-a\operatorname{sn}(u,k). +\end{align*} +Daraus kann man jetzt die folgenden Ausdrücke für die Ableitungen der +elliptischen Funktionen nach $\varphi$ ableiten: +\begin{align*} +\frac{d}{d\varphi} \operatorname{sn}(u,z) +&= +\frac{d}{d\varphi} y(\varphi) += +\cos\varphi += +\frac{x}{a} += +\operatorname{cn}(u,k) +&&\Rightarrow& +\frac{d}{du} +\operatorname{sn}(u,k) +&= +\operatorname{cn}(u,k) \frac{d\varphi}{du} +\\ +\frac{d}{d\varphi} \operatorname{cn}(u,z) +&= +\frac{d}{d\varphi} \frac{x(\varphi)}{a} += +-\sin\varphi += +-\operatorname{sn}(u,k) +&&\Rightarrow& +\frac{d}{du}\operatorname{cn}(u,k) +&= +-\operatorname{sn}(u,k) \frac{d\varphi}{du} +\\ +\frac{d}{d\varphi} \operatorname{dn}(u,z) +&= +\frac{1}{a}\frac{dr}{d\varphi} += +\frac{1}{a}\frac{d\sqrt{x^2+y^2}}{d\varphi} +%\\ +%& +\rlap{$\displaystyle\mathstrut += +\frac{x}{ar} \frac{dx}{d\varphi} ++ +\frac{y}{ar} \frac{dy}{d\varphi} +%\\ +%& += +\frac{x}{ar} (-a\operatorname{sn}(u,k)) ++ +\frac{y}{ar} \operatorname{cn}(u,k) +$} +\\ +& +\rlap{$\displaystyle\mathstrut += +\frac{x}{ar}(-ay) ++ +\frac{y}{ar} \frac{x}{a} +%\rlap{$\displaystyle += +\frac{xy(-1+\frac{1}{a^2})}{r} +%$} +%\\ +%& += +-\frac{xy(a^2-1)}{a^2r} +$} +\\ +&= +-\frac{a^2-1}{ar} +\operatorname{cn}(u,k) \operatorname{sn}(u,k) +%\\ +%& +\rlap{$\displaystyle\mathstrut += +-k^2 +\frac{a}{r} +\operatorname{cn}(u,k) \operatorname{sn}(u,k) +$} +\\ +&= +-k^2\frac{\operatorname{cn}(u,k)\operatorname{sn}(u,k)}{\operatorname{dn}(u,k)} +&&\Rightarrow& +\frac{d}{du} \operatorname{dn}(u,k) +&= +-k^2\frac{\operatorname{cn}(u,k) +\operatorname{sn}(u,k)}{\operatorname{dn}(u,k)} +\frac{d\varphi}{du}. +\end{align*} +Die einfachsten Beziehungen ergeben sich offenbar, wenn man $u$ so +wählt, dass +\[ +\frac{d\varphi}{du} += +\operatorname{dn}(u,k) += +\frac{r}{a}. +\] +Damit haben wir die grundlegenden Ableitungsregeln + +\begin{satz} +\index{Satz!Ableitungen der Jacobischen elliptischen Funktionen}% +\label{buch:elliptisch:satz:ableitungen} +Die Jacobischen elliptischen Funktionen haben die Ableitungen +\begin{equation} +\begin{aligned} +\frac{d}{du}\operatorname{sn}(u,k) +&= +\phantom{-}\operatorname{cn}(u,k)\operatorname{dn}(u,k) +\\ +\frac{d}{du}\operatorname{cn}(u,k) +&= +-\operatorname{sn}(u,k)\operatorname{dn}(u,k) +\\ +\frac{d}{du}\operatorname{dn}(u,k) +&= +-k^2\operatorname{sn}(u,k)\operatorname{cn}(u,k). +\end{aligned} +\label{buch:elliptisch:eqn:ableitungsregeln} +\end{equation} +\end{satz} + +% +% Der Grenzfall $k=1$ +% +\subsubsection{Der Grenzwert $k\to1$} +\begin{figure} +\centering +\includegraphics{chapters/110-elliptisch/images/sncnlimit.pdf} +\caption{Grenzfälle der Jacobischen elliptischen Funktionen +für die Werte $0$ und $1$ des Parameters $k$. +\label{buch:elliptisch:fig:sncnlimit}} +\end{figure} +Für $k=1$ ist $k^{\prime2}=1-k^2=$ und es folgt aus den +Relationen~\eqref{buch:elliptisch:eqn:jacobi-relationen} +\[ +\operatorname{cn}^2(u,k) +- +k^2 +\operatorname{dn}^2(u,k) += +k^{\prime2} += +0 +\qquad\Rightarrow\qquad +\operatorname{cn}^2(u,1) += +\operatorname{dn}^2(u,1), +\] +die beiden Funktionen +$\operatorname{cn}(u,k)$ +und +$\operatorname{dn}(u,k)$ +fallen also zusammen. +Die Ableitungsregeln werden dadurch vereinfacht: +\begin{align*} +\operatorname{sn}'(u,1) +&= +\operatorname{cn}(u,1) +\operatorname{dn}(u,1) += +\operatorname{cn}^2(u,1) += +1-\operatorname{sn}^2(u,1) +&&\Rightarrow& y'&=1-y^2 +\\ +\operatorname{cn}'(u,1) +&= +- +\operatorname{sn}(u,1) +\operatorname{dn}(u,1) += +- +\operatorname{sn}(u,1)\operatorname{cn}(u,1) +&&\Rightarrow& +\frac{z'}{z}&=(\log z)' = -y +\end{align*} +Die erste Differentialgleichung für $y$ lässt sich separieren, man findet +die Lösung +\[ +\frac{y'}{1-y^2} += +1 +\quad\Rightarrow\quad +\int \frac{dy}{1-y^2} = \int \,du +\quad\Rightarrow\quad +\operatorname{artanh}(y) = u +\quad\Rightarrow\quad +\operatorname{sn}(u,1)=\tanh u. +\] +Damit kann man jetzt auch $z$ berechnen: +\begin{align*} +(\log \operatorname{cn}(u,1))' +&= +\tanh u +&&\Rightarrow& +\log\operatorname{cn}(u,1) +&= +-\int\tanh u\,du += +-\log\cosh u +\\ +& +&&\Rightarrow& +\operatorname{cn}(u,1) +&= +\frac{1}{\cosh u} += +\operatorname{sech}u. +\end{align*} +Die Grenzfunktionen sind in Abbildung~\ref{buch:elliptisch:fig:sncnlimit} +dargestellt. + +% +% Das Argument u +% +\subsubsection{Das Argument $u$} +Die Gleichung +\begin{equation} +\frac{d\varphi}{du} += +\operatorname{dn}(u,k) +\label{buch:elliptisch:eqn:uableitung} +\end{equation} +ermöglicht, $\varphi$ in Abhängigkeit von $u$ zu berechnen, ohne jedoch +die geometrische Bedeutung zu klären. +Das beginnt bereits damit, dass der Winkel $\varphi$ nicht nicht der +Polarwinkel des Punktes $P$ in Abbildung~\ref{buch:elliptisch:fig:jacobidef} +ist, diesen nennen wir $\vartheta$. +Der Zusammenhang zwischen $\varphi$ und $\vartheta$ ist +\begin{equation} +\frac1{a}\tan\varphi = \tan\vartheta +\label{buch:elliptisch:eqn:phitheta} +\end{equation} + +Um die geometrische Bedeutung besser zu verstehen, nehmen wir jetzt an, +dass die Ellipse mit einem Parameter $t$ parametrisiert ist, dass also +$\varphi(t)$, $\vartheta(t)$ und $u(t)$ Funktionen von $t$ sind. +Die Ableitung von~\eqref{buch:elliptisch:eqn:phitheta} ist +\[ +\frac1{a}\cdot \frac{1}{\cos^2\varphi}\cdot \dot{\varphi} += +\frac{1}{\cos^2\vartheta}\cdot \dot{\vartheta}. +\] +Daraus kann die Ableitung von $\vartheta$ nach $\varphi$ bestimmt +werden, sie ist +\[ +\frac{d\vartheta}{d\varphi} += +\frac{\dot{\vartheta}}{\dot{\varphi}} += +\frac{1}{a} +\cdot +\frac{\cos^2\vartheta}{\cos^2\varphi} += +\frac{1}{a} +\cdot +\frac{(x/r)^2}{(x/a)^2} += +\frac{1}{a}\cdot +\frac{a^2}{r^2} += +\frac{1}{a}\cdot\frac{1}{\operatorname{dn}^2(u,k)}. +\] +Damit kann man jetzt mit Hilfe von~\eqref{buch:elliptisch:eqn:uableitung} +Die Ableitung von $\vartheta$ nach $u$ ermitteln, sie ist +\[ +\frac{d\vartheta}{du} += +\frac{d\vartheta}{d\varphi} +\cdot +\frac{d\varphi}{du} += +\frac{1}{a}\cdot\frac{1}{\operatorname{dn}^2(u,k)} +\cdot +\operatorname{dn}(u,k) += +\frac{1}{a} +\cdot +\frac{1}{\operatorname{dn}(u,k)} += +\frac{1}{a} +\cdot\frac{a}{r} += +\frac{1}{r}, +\] +wobei wir auch die Definition der Funktion $\operatorname{dn}(u,k)$ +verwendet haben. + +In der Parametrisierung mit dem Parameter $t$ kann man jetzt die Ableitung +von $u$ nach $t$ berechnen als +\[ +\frac{du}{dt} += +\frac{du}{d\vartheta} +\frac{d\vartheta}{dt} += +r +\dot{\vartheta}. +\] +Darin ist $\dot{\vartheta}$ die Winkelgeschwindigkeit des Punktes um +das Zentrum $O$ und $r$ ist die aktuelle Entfernung des Punktes $P$ +von $O$. +$r\dot{\vartheta}$ ist also die Geschwindigkeitskomponenten des Punktes +$P$ senkrecht auf den aktuellen Radiusvektor. +Der Parameter $u$, der zum Punkt $P$ gehört, ist also das Integral +\[ +u(P) = \int_0^P r\,d\vartheta. +\] +Für einen Kreis ist die Geschwindigkeit von $P$ immer senkrecht +auf dem Radiusvektor und der Radius ist konstant, so dass +$u(P)=\vartheta(P)$ ist. + +% +% Die abgeleiteten elliptischen Funktionen +% +\begin{figure} +\centering +\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/jacobi12.pdf} +\caption{Die Verhältnisse der Funktionen +$\operatorname{sn}(u,k)$, +$\operatorname{cn}(u,k)$ +udn +$\operatorname{dn}(u,k)$ +geben Anlass zu neun weitere Funktionen, die sich mit Hilfe +des Strahlensatzes geometrisch interpretieren lassen. +\label{buch:elliptisch:fig:jacobi12}} +\end{figure} +\begin{table} +\centering +\renewcommand{\arraystretch}{2.5} +\begin{tabular}{|>{$\displaystyle}c<{$}|>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}|} +\hline +\cdot & +\frac{1}{1} & +\frac{1}{\operatorname{sn}(u,k)} & +\frac{1}{\operatorname{cn}(u,k)} & +\frac{1}{\operatorname{dn}(u,k)} +\\[5pt] +\hline +1& +&%\operatorname{nn}(u,k)=\frac{1}{1} & +\operatorname{ns}(u,k)=\frac{1}{\operatorname{sn}(u,k)} & +\operatorname{nc}(u,k)=\frac{1}{\operatorname{cn}(u,k)} & +\operatorname{nd}(u,k)=\frac{1}{\operatorname{dn}(u,k)} +\\ +\operatorname{sn}(u,k) & +\operatorname{sn}(u,k)=\frac{\operatorname{sn}(u,k)}{1}& +&%\operatorname{ss}(u,k)=\frac{\operatorname{sn}(u,k)}{\operatorname{sn}(u,k)}& +\operatorname{sc}(u,k)=\frac{\operatorname{sn}(u,k)}{\operatorname{cn}(u,k)}& +\operatorname{sd}(u,k)=\frac{\operatorname{sn}(u,k)}{\operatorname{dn}(u,k)} +\\ +\operatorname{cn}(u,k) & +\operatorname{cn}(u,k)=\frac{\operatorname{cn}(u,k)}{1} & +\operatorname{cs}(u,k)=\frac{\operatorname{cn}(u,k)}{\operatorname{sn}(u,k)}& +&%\operatorname{cc}(u,k)=\frac{\operatorname{cn}(u,k)}{\operatorname{cn}(u,k)}& +\operatorname{cd}(u,k)=\frac{\operatorname{cn}(u,k)}{\operatorname{dn}(u,k)} +\\ +\operatorname{dn}(u,k) & +\operatorname{dn}(u,k)=\frac{\operatorname{dn}(u,k)}{1} & +\operatorname{ds}(u,k)=\frac{\operatorname{dn}(u,k)}{\operatorname{sn}(u,k)}& +\operatorname{dc}(u,k)=\frac{\operatorname{dn}(u,k)}{\operatorname{cn}(u,k)}& +%\operatorname{dd}(u,k)=\frac{\operatorname{dn}(u,k)}{\operatorname{dn}(u,k)} +\\[5pt] +\hline +\end{tabular} +\caption{Zusammenstellung der abgeleiteten Jacobischen elliptischen +Funktionen in hinteren drei Spalten als Quotienten der grundlegenden +Jacobischen elliptischen Funktionen. +Die erste Spalte zum Nenner $1$ enthält die grundlegenden +Jacobischen elliptischen Funktionen. +\label{buch:elliptisch:table:abgeleitetjacobi}} +\end{table} + +% +% Die abgeleiteten elliptischen Funktionen +% +\subsubsection{Die abgeleiteten elliptischen Funktionen} +Zusätzlich zu den grundlegenden Jacobischen elliptischen Funktioenn +lassen sich weitere elliptische Funktionen bilden, die unglücklicherweise +die {\em abgeleiteten elliptischen Funktionen} genannt werden. +Ähnlich wie die trigonometrischen Funktionen $\tan\alpha$, $\cot\alpha$, +$\sec\alpha$ und $\csc\alpha$ als Quotienten von $\sin\alpha$ und +$\cos\alpha$ definiert sind, sind die abgeleiteten elliptischen Funktionen +die in Tabelle~\ref{buch:elliptisch:table:abgeleitetjacobi} zusammengestellten +Quotienten der grundlegenden Jacobischen elliptischen Funktionen. +Die Bezeichnungskonvention ist, dass die Funktion $\operatorname{pq}(u,k)$ +ein Quotient ist, dessen Zähler durch den Buchstaben p bestimmt ist, +der Nenner durch den Buchstaben q. +Der Buchstabe n steht für eine $1$, die Buchstaben s, c und d stehen für +die Anfangsbuchstaben der grundlegenden Jacobischen elliptischen +Funktionen. +Meint man irgend eine der Jacobischen elliptischen Funktionen, schreibt +man manchmal auch $\operatorname{zn}(u,k)$. + +In Abbildung~\ref{buch:elliptisch:fig:jacobi12} sind die Quotienten auch +geometrisch interpretiert. +Der Wert der Funktion $\operatorname{nq}(u,k)$ ist die auf dem Strahl +mit Polarwinkel $\varphi$ abgetragene Länge bis zu den vertikalen +Geraden, die den verschiedenen möglichen Nennern entsprechen. +Entsprechend ist der Wert der Funktion $\operatorname{dq}(u,k)$ die +Länge auf dem Strahl mit Polarwinkel $\vartheta$. + +Die Relationen~\ref{buch:elliptisch:eqn:jacobi-relationen} +ermöglichen, jede Funktion $\operatorname{zn}(u,k)$ durch jede +andere auszudrücken. +Die schiere Anzahl solcher Beziehungen macht es unmöglich, sie +übersichtlich in einer Tabelle zusammenzustellen, daher soll hier +nur an einem Beispiel das Vorgehen gezeigt werden: + +\begin{beispiel} +Die Funktion $\operatorname{sc}(u,k)$ soll durch $\operatorname{cd}(u,k)$ +ausgedrückt werden. +Zunächst ist +\[ +\operatorname{sc}(u,k) += +\frac{\operatorname{sn}(u,k)}{\operatorname{cn}(u,k)} +\] +nach Definition. +Im Resultat sollen nur noch $\operatorname{cn}(u,k)$ und +$\operatorname{dn}(u,k)$ vorkommen. +Daher eliminieren wir zunächst die Funktion $\operatorname{sn}(u,k)$ +mit Hilfe von \eqref{buch:elliptisch:eqn:jacobi-relationen} und erhalten +\begin{equation} +\operatorname{sc}(u,k) += +\frac{\sqrt{1-\operatorname{cn}^2(u,k)}}{\operatorname{cn}(u,k)}. +\label{buch:elliptisch:eqn:allgausdruecken} +\end{equation} +Nun genügt es, die Funktion $\operatorname{cn}(u,k)$ durch +$\operatorname{cd}(u,k)$ auszudrücken. +Aus der Definition und der +dritten Relation in \eqref{buch:elliptisch:eqn:jacobi-relationen} +erhält man +\begin{align*} +\operatorname{cd}^2(u,k) +&= +\frac{\operatorname{cn}^2(u,k)}{\operatorname{dn}^2(u,k)} += +\frac{\operatorname{cn}^2(u,k)}{k^{\prime2}+k^2\operatorname{cn}^2(u,k)} +\\ +\Rightarrow +\qquad +k^{\prime 2} +\operatorname{cd}^2(u,k) ++ +k^2\operatorname{cd}^2(u,k)\operatorname{cn}^2(u,k) +&= +\operatorname{cn}^2(u,k) +\\ +\operatorname{cn}^2(u,k) +- +k^2\operatorname{cd}^2(u,k)\operatorname{cn}^2(u,k) +&= +k^{\prime 2} +\operatorname{cd}^2(u,k) +\\ +\operatorname{cn}^2(u,k) +&= +\frac{ +k^{\prime 2} +\operatorname{cd}^2(u,k) +}{ +1 - k^2\operatorname{cd}^2(u,k) +} +\end{align*} +Für den Zähler brauchen wir $1-\operatorname{cn}^2(u,k)$, also +\[ +1-\operatorname{cn}^2(u,k) += +\frac{ +1 +- +k^2\operatorname{cd}^2(u,k) +- +k^{\prime 2} +\operatorname{cd}^2(u,k) +}{ +1 +- +k^2\operatorname{cd}^2(u,k) +} += +\frac{1-\operatorname{cd}^2(u,k)}{1-k^2\operatorname{cd}^2(u,k)} +\] +Einsetzen in~\eqref{buch:elliptisch:eqn:allgausdruecken} gibt +\begin{align*} +\operatorname{sc}(u,k) +&= +\frac{ +\sqrt{1-\operatorname{cd}^2(u,k)} +}{\sqrt{1-k^2\operatorname{cd}^2(u,k)}} +\cdot +\frac{ +\sqrt{1 - k^2\operatorname{cd}^2(u,k)} +}{ +k' +\operatorname{cd}(u,k) +} += +\frac{ +\sqrt{1-\operatorname{cd}^2(u,k)} +}{ +k' +\operatorname{cd}(u,k) +}. +\qedhere +\end{align*} +\end{beispiel} + +\subsubsection{Ableitung der abgeleiteten elliptischen Funktionen} +Aus den Ableitungen der grundlegenden Jacobischen elliptischen Funktionen +können mit der Quotientenregel nun auch beliebige Ableitungen der +abgeleiteten Jacobischen elliptischen Funktionen gefunden werden. +Als Beispiel berechnen wir die Ableitung von $\operatorname{sc}(u,k)$. +Sie ist +\begin{align*} +\frac{d}{du} +\operatorname{sc}(u,k) +&= +\frac{d}{du} +\frac{\operatorname{sn}(u,k)}{\operatorname{cn}(u,k)} += +\frac{ +\operatorname{sn}'(u,k)\operatorname{cn}(u,k) +- +\operatorname{sn}(u,k)\operatorname{cn}'(u,k)}{ +\operatorname{cn}^2(u,k) +} +\\ +&= +\frac{ +\operatorname{cn}^2(u,k)\operatorname{dn}(u,k) ++ +\operatorname{sn}^2(u,k)\operatorname{dn}(u,k) +}{ +\operatorname{cn}^2(u,k) +} += +\frac{( +\operatorname{sn}^2(u,k) ++ +\operatorname{cn}^2(u,k) +)\operatorname{dn}(u,k)}{ +\operatorname{cn}^2(u,k) +} +\\ +&= +\frac{1}{\operatorname{cn}(u,k)} +\cdot +\frac{\operatorname{dn}(u,k)}{\operatorname{cn}(u,k)} += +\operatorname{nc}(u,k) +\operatorname{dc}(u,k). +\end{align*} +Man beachte, dass das Quadrat der Nennerfunktion im Resultat +der Quotientenregel zur Folge hat, dass die +beiden Funktionen im Resultat beide den gleichen Nenner haben wie +die Funktion, die abgeleitet wird. + +Mit etwas Fleiss kann man nach diesem Muster alle Ableitungen +\begin{equation} +%\small +\begin{aligned} +\operatorname{sn}'(u,k) +&= +\phantom{-} +\operatorname{cn}(u,k)\,\operatorname{dn}(u,k) +&&\qquad& +\operatorname{ns}'(u,k) +&= +- +\operatorname{cs}(u,k)\,\operatorname{ds}(u,k) +\\ +\operatorname{cn}'(u,k) +&= +- +\operatorname{sn}(u,k)\,\operatorname{dn}(u,k) +&&& +\operatorname{nc}'(u,k) +&= +\phantom{-} +\operatorname{sc}(u,k)\,\operatorname{dc}(u,k) +\\ +\operatorname{dn}'(u,k) +&= +-k^2 +\operatorname{sn}(u,k)\,\operatorname{cn}(u,k) +&&& +\operatorname{nd}'(u,k) +&= +\phantom{-} +k^2 +\operatorname{sd}(u,k)\,\operatorname{cd}(u,k) +\\ +\operatorname{sc}'(u,k) +&= +\phantom{-} +\operatorname{dc}(u,k)\,\operatorname{nc}(u,k) +&&& +\operatorname{cs}'(u,k) +&= +- +\operatorname{ds}(u,k)\,\operatorname{ns}(u,k) +\\ +\operatorname{cd}'(u,k) +&= +-k^{\prime2} +\operatorname{sd}(u,k)\,\operatorname{nd}(u,k) +&&& +\operatorname{dc}'(u,k) +&= +\phantom{-} +k^{\prime2} +\operatorname{dc}(u,k)\,\operatorname{nc}(u,k) +\\ +\operatorname{ds}'(d,k) +&= +- +\operatorname{cs}(u,k)\,\operatorname{ns}(u,k) +&&& +\operatorname{sd}'(d,k) +&= +\phantom{-} +\operatorname{cd}(u,k)\,\operatorname{nd}(u,k) +\end{aligned} +\label{buch:elliptisch:eqn:alleableitungen} +\end{equation} +finden. +Man beachte, dass in jeder Identität alle Funktionen den gleichen +zweiten Buchstaben haben. + +\subsubsection{Weitere Beziehungen} +Für die Jacobischen elliptischen Funktionen lässt sich eine grosse +Zahl weiterer Eigenschaften und Identitäten beweisen. +Zum Beispiel gibt es Aditionstheoreme, die im Grenzfall $k\to 0$ zu +den Additionstheoremen für die trigonometrischen Funktionen werden. +\index{Additionstheorem}% +Ebenso kann man weitere algebraische Identitäten finden. +So lässt sich zum Beispiel die einzige reelle Nullstelle von $x^5+x=w$ +mit Jacobischen elliptischen Funktionen darstellen, während es +nicht möglich ist, diese Lösung als Wurzelausdruck zu schreiben. + +Die Jacobischen elliptischen Funktionen lassen sich statt auf dem +hier gewählten trigonometrischen Weg auch mit Hilfe der Jacobischen +Theta-Funktionen definieren, die Lösungen einer Wärmeleitungsgleichung +\index{Theta-Funktionen}% +\index{Wärmeleitungs-Gleichung}% +mit geeigneten Randbedingungen sind. +Diese Vorgehensweise hat den Vorteil, ziemlich direkt zu +Reihen- und Produktentwicklungen für die Funktionen zu führen. +Auch die Additionstheorem ergeben sich vergleichsweise leicht. +Dieser Zugang zu den Jacobischen elliptischen Funktionen wird in der +Standardreferenz~\cite{buch:ellfun-applications} gewählt. + +Bei anderen speziellen Funktionen waren Reihenentwicklungen ein +wichtiges Hilfsmittel zu deren numerischer Berechnung. +Bei den Jacobischen elliptischen Funktionen ist diese Methode +nicht zielführend. +Im Abschnitt~\ref{buch:elliptisch:subsection:differentialgleichungen} +wird gezeigt, dass Jacobische elliptische Funktionen gewisse nichtlineare +Differentialgleichungen zu lösen ermöglichen. +Dies zeigt auch, dass Jacobischen elliptischen Funktionen +Umkehrfunktionen der elliptischen Integrale sind, die in +Abschnitt~\ref{buch:elliptisch:subsection:agm} mit dem +arithmetisch-geometrischen Mittel berechnet wurden. +Die dort angetroffenen numerischen Schwierigkeiten treten bei der +Berechnung der Umkehrfunktion jedoch nicht auf. + +Die grundlegende Mechanik dieser Berechnungsmethode wird auf +Seite~\pageref{buch:elliptisch:jacobi:agm} dargestellt und +und in den Übungsaufgaben +\ref{buch:elliptisch:aufgabe:2} bis \ref{buch:elliptisch:aufgabe:5} +etwas näher untersucht wird. + +Aus der Theorie das arithmetisch-geometrischen Mittels lässt sich +die sogenannte Landen-Trans\-formation herleiten. +\index{Landen-Transformation}% +Sie stellt eine Verbindung zwischen +den Werten der elliptischen Funktionen zu verschiedenen Moduli $k$ her. +Sie ist die Basis aller effizienten Berechnungsmethoden. + + +% algebraische Beziehungen \\ +% Additionstheoreme \\ +% Perioden +% use https://math.stackexchange.com/questions/3013692/how-to-show-that-jacobi-sine-function-is-doubly-periodic + + diff --git a/buch/chapters/110-elliptisch/experiments/KK.pdf b/buch/chapters/110-elliptisch/experiments/KK.pdf Binary files differnew file mode 100644 index 0000000..13a2739 --- /dev/null +++ b/buch/chapters/110-elliptisch/experiments/KK.pdf diff --git a/buch/chapters/110-elliptisch/experiments/KK.tex b/buch/chapters/110-elliptisch/experiments/KK.tex new file mode 100644 index 0000000..a3ae425 --- /dev/null +++ b/buch/chapters/110-elliptisch/experiments/KK.tex @@ -0,0 +1,66 @@ +% +% KK.tex -- template for standalon tikz images +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\def\dx{10} +\def\dy{3} +\input{KKpath.tex} + +\draw[->] (-0.1,0) -- (10.3,0) coordinate[label={$k$}]; +\draw[->] (0,-0.1) -- (0,{2*\dy+0.3}) coordinate[label={right:$y$}]; + +\node at (3,{1.2*\dy}) {$\displaystyle y = \frac{K(k)}{K(\!\sqrt{1-k^2})}$}; + +\begin{scope} +\clip (0,0) rectangle (10,{2*\dy}); +\draw[color=red,line width=1.4pt] \KKpath; +\end{scope} + +\draw[line width=0.2pt] (10,0) -- (10,{2*\dy}); + +\foreach \y in {0.0,0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0}{ + \draw (-0.05,{\y*\dy}) -- (0.05,{\y*\dy}); + \node at (0,{\y*\dy}) [left] {$\y\mathstrut$}; +} + +\foreach \k in {1,...,9}{ + \draw ({\k*\dx/10},-0.05) -- ({\k*\dx/10},0.05); + \node at ({\k*\dx/10},0) [below] {$0.\k\mathstrut$}; +} +\node at (0,0) [below] {$0\mathstrut$}; +\node at (10,0) [below] {$1\mathstrut$}; + +\draw[color=blue] ({\knull*\dx},0) -- ({\knull*\dx},{\KKnull*\dy}); +\foreach \y in {1,2,3,4}{ + \draw[color=blue] + ({\knull*\dx-0.05},{\y*\KKnull*\dy/5}) + -- + ({\knull*\dx+0.05},{\y*\KKnull*\dy/5}); +} +\draw[color=black,line width=0.1pt] (0,{\KKnull*\dy}) -- ({\knull*\dx},{\KKnull*\dy}); +\draw[color=black,line width=0.1pt] (0,{\KKnull*\dy/5}) -- ({\kone*\dx},{\KKnull*\dy/5}); +\node at ({0.6*\dx},{\KKnull*\dy}) [above] {$y=1.7732$}; +\node at ({0.6*\dx},{\KKnull*\dy/5}) [above] {$y=0.3546$}; +\draw[color=blue] ({\kone*\dx},0) -- ({\kone*\dx},{\KKnull*\dy/5}); +\draw[color=blue] ({\kone*\dx},{\KKnull*\dy/5}) -- ({\knull*\dx},{\KKnull*\dy/5}); +\fill[color=blue] ({\kone*\dx},{\KKnull*\dy/5}) circle[radius=0.05]; +\fill[color=blue] ({\knull*\dx},{\KKnull*\dy/5}) circle[radius=0.05]; +\fill[color=blue] ({\knull*\dx},{\KKnull*\dy}) circle[radius=0.05]; +\node[color=blue] at ({\knull*\dx},0) [left,rotate=90] {$k=0.97\mathstrut$}; +\node[color=blue] at ({\kone*\dx},0) [left,rotate=90] {$k_1=0.0477$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/110-elliptisch/experiments/KN.cpp b/buch/chapters/110-elliptisch/experiments/KN.cpp new file mode 100644 index 0000000..1dcca9e --- /dev/null +++ b/buch/chapters/110-elliptisch/experiments/KN.cpp @@ -0,0 +1,177 @@ +/* + * KN.cpp + * + * (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule + */ +#include <cstdlib> +#include <cstdio> +#include <cmath> +#include <iostream> +#include <fstream> +#include <sstream> +#include <getopt.h> +#include <vector> +#include <gsl/gsl_sf_elljac.h> +#include <gsl/gsl_sf_ellint.h> + +namespace KN { + +bool debug = false; + +static struct option longopts[] { +{ "debug", no_argument, NULL, 'd' }, +{ "N", required_argument, NULL, 'N' }, +{ "outfile", required_argument, NULL, 'o' }, +{ "min", required_argument, NULL, 'm' }, +{ NULL, 0, NULL, 0 } +}; + +double KprimeK(double k) { + double kprime = sqrt(1-k*k); + if (debug) + printf("%s:%d: k = %f, k' = %f\n", __FILE__, __LINE__, k, kprime); + double v + = + gsl_sf_ellint_Kcomp(k, GSL_PREC_DOUBLE) + / + gsl_sf_ellint_Kcomp(kprime, GSL_PREC_DOUBLE) + ; + if (debug) + printf("%s:%d: KprimeK(k = %f) = %f\n", __FILE__, __LINE__, k, v); + return v; +} + +static const int L = 100000000; +static const double h = 1. / L; + +double Kd(double k) { + double m = 0; + if (k < h) { + m = 2 * (KprimeK(k) - KprimeK(k / 2)) / k; + } else if (k > 1-h) { + m = 2 * (KprimeK((1 + k) / 2) - KprimeK(k)) / (1 - k); + + } else { + m = L * (KprimeK(k + h) - KprimeK(k)); + } + if (debug) + printf("%s:%d: Kd(%f) = %f\n", __FILE__, __LINE__, k, m); + return m; +} + +double k1(double y) { + if (debug) + printf("%s:%d: Newton for y = %f\n", __FILE__, __LINE__, y); + double kn = 0.5; + double delta = 1; + int n = 0; + while ((fabs(delta) > 0.000001) && (n < 10)) { + double yn = KprimeK(kn); + if (debug) + printf("%s:%d: k%d = %f, y%d = %f\n", __FILE__, __LINE__, n, kn, n, yn); + delta = (yn - y) / Kd(kn); + if (debug) + printf("%s:%d: delta = %f\n", __FILE__, __LINE__, delta); + double kneu = kn - delta; + if (kneu <= 0) { + kneu = kn / 4; + } + if (kneu >= 1) { + kneu = (3 + kn) / 4; + } + kn = kneu; + if (debug) + printf("%s:%d: kneu = %f, kn = %f\n", __FILE__, __LINE__, kneu, kn); + n++; + } + if (debug) + printf("%s:%d: Newton result: k = %f\n", __FILE__, __LINE__, kn); + return kn; +} + +double k1(int N, double k) { + return k1(KprimeK(k) / N); +} + +/** + * \brief Main function for the slcl program + */ +int main(int argc, char *argv[]) { + int longindex; + int c; + int N = 5; + double kmin = 0.01; + std::string outfilename; + while (EOF != (c = getopt_long(argc, argv, "d:N:o:m:", + longopts, &longindex))) + switch (c) { + case 'd': + debug = true; + break; + case 'N': + N = std::stoi(optarg); + break; + case 'o': + outfilename = std::string(optarg); + break; + case 'm': + kmin = std::stod(optarg); + break; + } + + double d = 0.01; + if (outfilename.size() > 0) { + FILE *fn = fopen(outfilename.c_str(), "w"); + fprintf(fn, "\\def\\KKpath{ "); + double k = d; + fprintf(fn, " (0,0)"); + double k0 = k/16; + while (k0 < k) { + fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", k0, KprimeK(k0)); + k0 *= 2; + } + while (k < 1-0.5*d) { + fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", k, KprimeK(k)); + k += d; + } + fprintf(fn, "}\n"); + + k0 = 0.97; + fprintf(fn, "\\def\\knull{%.4f}\n", k0); + double KK = KprimeK(k0); + fprintf(fn, "\\def\\KKnull{%.4f}\n", KK); + fprintf(fn, "\\def\\kone{%.4f}\n", k1(N, k0)); + + fclose(fn); + return EXIT_SUCCESS; + } + + for (double k = kmin; k < (1 - d/2); k += d) { + if (debug) + printf("%s:%d: k = %f\n", __FILE__, __LINE__, k); + double y = KprimeK(k); + double k0 = k1(y); + double kone = k1(N, k0); + printf("g(%4.2f) = %10.6f,", k, y); + printf(" g'(%.2f) = %10.6f,", k, Kd(k)); + printf(" g^{-1} = %10.6f,", k0); + printf(" k1 = %10.6f,", kone); + printf(" g(k1) = %10.6f\n", KprimeK(kone)); + } + + return EXIT_SUCCESS; +} + +} // namespace KN + +int main(int argc, char *argv[]) { + try { + return KN::main(argc, argv); + } catch (const std::exception& e) { + std::cerr << "terminated by exception: " << e.what(); + std::cerr << std::endl; + } catch (...) { + std::cerr << "terminated by unknown exception" << std::endl; + } + return EXIT_FAILURE; +} diff --git a/buch/chapters/110-elliptisch/experiments/Makefile b/buch/chapters/110-elliptisch/experiments/Makefile new file mode 100644 index 0000000..fac4fbc --- /dev/null +++ b/buch/chapters/110-elliptisch/experiments/Makefile @@ -0,0 +1,15 @@ +# +# Makefile +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue +# +all: KK.pdf + +KN: KN.cpp + g++ -O -Wall -std=c++11 KN.cpp -o KN `pkg-config --cflags gsl` `pkg-config --libs gsl` + +KKpath.tex: KN + ./KN --outfile KKpath.tex + +KK.pdf: KK.tex KKpath.tex + pdflatex KK.tex diff --git a/buch/chapters/110-elliptisch/images/Makefile b/buch/chapters/110-elliptisch/images/Makefile index 68322b6..7636e65 100644 --- a/buch/chapters/110-elliptisch/images/Makefile +++ b/buch/chapters/110-elliptisch/images/Makefile @@ -5,7 +5,8 @@ # all: lemniskate.pdf ellipsenumfang.pdf unvollstaendig.pdf rechteck.pdf \ ellipse.pdf pendel.pdf jacobiplots.pdf jacobidef.pdf jacobi12.pdf \ - sncnlimit.pdf + sncnlimit.pdf slcl.pdf torusschnitt.pdf kegelpara.pdf lemnispara.pdf \ + ellpolnul.pdf ellall.pdf ellselection.pdf lemniskate.pdf: lemniskate.tex pdflatex lemniskate.tex @@ -71,3 +72,59 @@ jacobi12.pdf: jacobi12.tex sncnlimit.pdf: sncnlimit.tex pdflatex sncnlimit.tex +slcl: slcl.cpp + g++ -O -Wall -std=c++11 slcl.cpp -o slcl `pkg-config --cflags gsl` `pkg-config --libs gsl` + +slcldata.tex: slcl + ./slcl --outfile=slcldata.tex --a=0 --b=13.4 --steps=200 +slcl.pdf: slcl.tex slcldata.tex + pdflatex slcl.tex + +KEGELSIZE = -W256 -H256 +KEGELSIZE = -W128 -H128 +KEGELSIZE = -W1080 -H1080 +kegelpara.png: kegelpara.pov + povray +A0.1 $(KEGELSIZE) -Okegelpara.png kegelpara.pov + +kegelpara.jpg: kegelpara.png Makefile + convert -extract 1080x1040+0+0 kegelpara.png \ + -density 300 -units PixelsPerInch kegelpara.jpg + +kegelpara.pdf: kegelpara.tex kegelpara.jpg + pdflatex kegelpara.tex + +torusschnitt.png: torusschnitt.pov + povray +A0.1 -W1920 -H1080 -Otorusschnitt.png torusschnitt.pov + +torusschnitt.jpg: torusschnitt.png Makefile + convert -extract 1640x1080+140+0 torusschnitt.png \ + -density 300 -units PixelsPerInch torusschnitt.jpg + +torusschnitt.pdf: torusschnitt.tex torusschnitt.jpg + pdflatex torusschnitt.tex + +lemnispara: lemnispara.cpp + g++ -O2 -Wall -g -o lemnispara `pkg-config --cflags gsl` \ + lemnispara.cpp `pkg-config --libs gsl` + +lemnisparadata.tex: lemnispara + ./lemnispara + +lemnispara.pdf: lemnispara.tex lemnisparadata.tex + pdflatex lemnispara.tex + +ltest: lemnispara.pdf + +ellpolnul.pdf: ellpolnul.tex ellcommon.tex + pdflatex ellpolnul.tex +ellall.pdf: ellall.tex ellcommon.tex + pdflatex ellall.tex + +rechteckpfade2.tex: rechteck Makefile + ./rechteck --outfile rechteckpfade2.tex --k 0.87 --vsteps=1 +ellselection.pdf: ellselection.tex rechteckpfade2.tex + pdflatex ellselection.tex + +rechteckpfade3.tex: rechteck + ./rechteck --outfile rechteckpfade3.tex --k 0.70710678118654752440 \ + --vsteps=4 diff --git a/buch/chapters/110-elliptisch/images/ellall.pdf b/buch/chapters/110-elliptisch/images/ellall.pdf Binary files differnew file mode 100644 index 0000000..fd0a5dd --- /dev/null +++ b/buch/chapters/110-elliptisch/images/ellall.pdf diff --git a/buch/chapters/110-elliptisch/images/ellall.tex b/buch/chapters/110-elliptisch/images/ellall.tex new file mode 100644 index 0000000..b37fe12 --- /dev/null +++ b/buch/chapters/110-elliptisch/images/ellall.tex @@ -0,0 +1,215 @@ +% +% ellpolnul.tex -- template for standalon tikz images +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} +\input{ellcommon.tex} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +%\draw (-1,-1) rectangle (1,1); +%\node at (-1,-1) [below left] {$0$}; +%\node at (1,-1) [below right] {$K$}; +%\node at (1,1) [above right] {$K+iK'$}; +%\node at (-1,1) [above left] {$iK'$}; +%\node at (0,0) {$u$}; + +\fill[color=rot!10,opacity=0.5] (-5.5,-4.3) rectangle (7.3,-1.7); +\fill[color=blau!10,opacity=0.5] (-5.5,-7.3) rectangle (7.3,-4.7); +\fill[color=gruen!10,opacity=0.5] (-5.5,-10.3) rectangle (7.3,-7.7); + +\fill[color=rot!10,opacity=0.5] (-1.3,-10.5) rectangle (1.3,2.5); +\fill[color=blau!10,opacity=0.5] (1.7,-10.5) rectangle (4.3,2.5); +\fill[color=gruen!10,opacity=0.5] (4.7,-10.5) rectangle (7.3,2.5); + +\begin{scope}[xshift=1.5cm,yshift=2cm] +\node at (0,0) {Zähler}; +\draw[<-] (-4.5,0) -- (-1,0); +\draw[->] (1,0) -- (4.5,0); +\node[color=black] at (-4.5,-0.4) {\Large n}; +\node[color=rot] at (-1.5,-0.4) {\Large s}; +\node[color=blau] at (1.5,-0.4) {\Large c}; +\node[color=gruen] at (4.5,-0.4) {\Large d}; +\end{scope} + +\begin{scope}[xshift=-5.1cm,yshift=-4.5cm] +\node at (0,0) [rotate=90] {Nenner}; +\draw[<-] (0,-4.5) -- (0,-1); +\draw[->] (0,1) -- (0,4.5); +\node[color=gruen] at (0.4,-4.5) [rotate=90] {\Large d}; +\node[color=blau] at (0.4,-1.5) [rotate=90] {\Large c}; +\node[color=rot] at (0.4,1.5) [rotate=90] {\Large s}; +\node[color=black] at (0.4,4.5) [rotate=90] {\Large n}; +\end{scope} + +\begin{scope}[xshift=-3cm,yshift=0cm] +\node at (0,0) {$1$}; +\draw[color=gray!20] (-1,-1) rectangle (1,1); +\end{scope} + +\definecolor{sccolor}{rgb}{0.8,0.0,1.0} +\definecolor{sdcolor}{rgb}{0.6,0.6,0.0} +\definecolor{cdcolor}{rgb}{0.0,0.6,1.0} + +\begin{scope}[xshift=0cm] +\rechteck{rot}{\operatorname{sn}(u,k)} +\nullstelle{(-1,-1)}{rot} +\pol{(-1,1)}{rot} +\node at (-1,-1) {$0$}; +\node at (1,-1) {$1$}; +\node at (1,1) {$\frac1k$}; +\node at (-1,1) {$\infty$}; +\end{scope} + +\begin{scope}[xshift=3cm] +\rechteck{blau}{\operatorname{cn}(u,k)} +\nullstelle{(1,-1)}{blau} +\pol{(-1,1)}{blau} +\node at (-1,-1) {$1$}; +\node at (1,-1) {$0$}; +\node at (1,1) {$\frac{k'}{ik}$}; +\node at (-1,1) {$\infty$}; +\end{scope} + +\begin{scope}[xshift=6cm] +\rechteck{gruen}{\operatorname{dn}(u,k)} +\nullstelle{(1,1)}{gruen} +\pol{(-1,1)}{gruen} +\node at (-1,-1) {$1$}; +\node at (1,-1) {$k'$}; +\node at (1,1) {$0$}; +\node at (-1,1) {$\infty$}; +\end{scope} + +% +% start row with denominator sn(u,k) +% + +\begin{scope}[xshift=-3cm,yshift=-3cm] +\rechteck{rot}{\operatorname{ns}(u,k)} +\pol{(-1,-1)}{rot} +\nullstelle{(-1,1)}{rot} +\node at (-1,-1) {$\infty$}; +\node at (1,-1) {$1$}; +\node at (1,1) {$k$}; +\node at (-1,1) {$0$}; +\end{scope} + +\begin{scope}[xshift=0cm,yshift=-3cm] +%\rechteck{gray}{1} +\fill[color=white] (-1,-1) rectangle (1,1); +\node[color=gray] at (0,0) {$1$}; +\end{scope} + +\begin{scope}[xshift=3cm,yshift=-3cm] +\rechteck{sccolor}{\operatorname{cs}(u,k)} +\pol{(-1,-1)}{sccolor} +\nullstelle{(1,-1)}{sccolor} +\node at (-1,-1) {$\infty$}; +\node at (1,-1) {$0$}; +\node at (1,1) {$\frac{k'}{i}$}; +\node at (-1,1) {$ $}; +\end{scope} + +\begin{scope}[xshift=6cm,yshift=-3cm] +\rechteck{sdcolor}{\operatorname{ds}(u,k)} +\pol{(-1,-1)}{sdcolor} +\nullstelle{(1,1)}{sdcolor} +\node at (-1,-1) {$\infty$}; +\node at (1,-1) {$k'$}; +\node at (1,1) {$0$}; +\node at (-1,1) {$ $}; +\end{scope} + +% +% start row with denominator cn(u,k) +% + +\begin{scope}[xshift=-3cm,yshift=-6cm] +\rechteck{blau}{\operatorname{nc}(u,k)} +\pol{(1,-1)}{blau} +\nullstelle{(-1,1)}{blau} +\node at (-1,-1) {$1$}; +\node at (-1,1) {$0$}; +\node at (1,-1) {$\infty$}; +\node at (1,1) {$\frac{ik}{k'}$}; +\end{scope} + +\begin{scope}[xshift=0cm,yshift=-6cm] +\rechteck{sccolor}{\operatorname{sc}(u,k)} +\nullstelle{(-1,-1)}{sccolor} +\pol{(1,-1)}{sccolor} +\node at (-1,-1) {$0$}; +\node at (1,-1) {$\infty$}; +\node at (-1,1) {$ $}; +\node at (1,1) {$\frac{i}{k'}$}; +\end{scope} + +\begin{scope}[xshift=3cm,yshift=-6cm] +%\rechteck{gray}{1} +\fill[color=white] (-1,-1) rectangle (1,1); +\node[color=gray] at (0,0) {$1$}; +\end{scope} + +\begin{scope}[xshift=6cm,yshift=-6cm] +\rechteck{cdcolor}{\operatorname{dc}(u,k)} +\nullstelle{(1,1)}{cdcolor} +\pol{(1,-1)}{cdcolor} +\node at (-1,-1) {$1$}; +\node at (1,-1) {$\infty$}; +\node at (-1,1) {$k$}; +\node at (1,1) {$0$}; +\end{scope} + +% +% start row with denominator dn(u,k) +% + +\begin{scope}[xshift=-3cm,yshift=-9cm] +\rechteck{gruen}{\operatorname{nd}(u,k)} +\pol{(1,1)}{gruen} +\nullstelle{(-1,1)}{gruen} +\node at (-1,-1) {$1$}; +\node at (-1,1) {$0$}; +\node at (1,-1) {$\frac{1}{k'}$}; +\node at (1,1) {$\infty$}; +\end{scope} + +\begin{scope}[xshift=0cm,yshift=-9cm] +\rechteck{sdcolor}{\operatorname{sd}(u,k)} +\nullstelle{(-1,-1)}{sdcolor} +\pol{(1,1)}{sdcolor} +\node at (-1,-1) {$0$}; +\node at (1,-1) {$\frac{1}{k'}$}; +\node at (-1,1) {$ $}; +\node at (1,1) {$\infty$}; +\end{scope} + +\begin{scope}[xshift=3cm,yshift=-9cm] +\rechteck{cdcolor}{\operatorname{cd}(u,k)} +\pol{(1,1)}{cdcolor} +\nullstelle{(1,-1)}{cdcolor} +\node at (-1,-1) {$1$}; +\node at (-1,1) {$\frac1k $}; +\node at (1,-1) {$0$}; +\node at (1,1) {$\infty$}; +\end{scope} + +\begin{scope}[xshift=6cm,yshift=-9cm] +%\rechteck{gray}{1} +\fill[color=white] (-1,-1) rectangle (1,1); +\node[color=gray] at (0,0) {$1$}; +\end{scope} + + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/110-elliptisch/images/ellcommon.tex b/buch/chapters/110-elliptisch/images/ellcommon.tex new file mode 100644 index 0000000..cd3245d --- /dev/null +++ b/buch/chapters/110-elliptisch/images/ellcommon.tex @@ -0,0 +1,24 @@ +% +% ellcommon.tex -- common macros/definitions for elliptic function +% values display +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\definecolor{rot}{rgb}{0.8,0,0} +\definecolor{blau}{rgb}{0,0,1} +\definecolor{gruen}{rgb}{0,0.6,0} +\def\l{0.2} + +\def\pol#1#2{ + \draw[color=#2!50,line width=3.0pt] + ($#1+(-\l,-\l)$) -- ($#1+(\l,\l)$); + \draw[color=#2!50,line width=3.0pt] + ($#1+(-\l,\l)$) -- ($#1+(\l,-\l)$); +} +\def\nullstelle#1#2{ + \draw[color=#2!50,line width=3.0pt] #1 circle[radius=\l]; +} +\def\rechteck#1#2{ + \fill[color=#1!20] (-1,-1) rectangle (1,1); + \node[color=#1] at (0,0) {$#2\mathstrut$}; +} diff --git a/buch/chapters/110-elliptisch/images/ellpolnul.pdf b/buch/chapters/110-elliptisch/images/ellpolnul.pdf Binary files differnew file mode 100644 index 0000000..d798169 --- /dev/null +++ b/buch/chapters/110-elliptisch/images/ellpolnul.pdf diff --git a/buch/chapters/110-elliptisch/images/ellpolnul.tex b/buch/chapters/110-elliptisch/images/ellpolnul.tex new file mode 100644 index 0000000..dfa04d3 --- /dev/null +++ b/buch/chapters/110-elliptisch/images/ellpolnul.tex @@ -0,0 +1,69 @@ +% +% ellpolnul.tex -- template for standalon tikz images +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} +\input{ellcommon.tex} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input rechteckpfade3.tex + +\pgfmathparse{2/\xmax} +\xdef\dx{\pgfmathresult} +\xdef\dy{\dx} + +\begin{scope}[xshift=-1cm,yshift=-1cm] +\clip (0,0) rectangle (2,2); +\netz{0.4pt} +\draw[line width=0.4pt] (-1,0) -- (1,0); +\end{scope} +\fill[color=white,opacity=0.7] (-1,-1) rectangle (1,1); +\draw (-1,-1) rectangle (1,1); +\node at (-1,-1) [below left] {$0$}; +\node at (1,-1) [below right] {$K$}; +\node at (1,1) [above right] {$K+iK'$}; +\node at (-1,1) [above left] {$iK'$}; +\node at (0,0) {$u$}; + +\begin{scope}[xshift=4cm] +\rechteck{rot}{\operatorname{sn}(u,k)} +\nullstelle{(-1,-1)}{rot} +\pol{(-1,1)}{rot} +\node at (-1,-1) {$0$}; +\node at (1,-1) {$1$}; +\node at (1,1) {$\frac1k$}; +\node at (-1,1) {$\infty$}; +\end{scope} + +\begin{scope}[xshift=7cm] +\rechteck{blau}{\operatorname{cn}(u,k)} +\nullstelle{(1,-1)}{blau} +\pol{(-1,1)}{blau} +\node at (-1,-1) {$1$}; +\node at (1,-1) {$0$}; +\node at (1,1) {$\frac{k'}{ik}$}; +\node at (-1,1) {$\infty$}; +\end{scope} + +\begin{scope}[xshift=10cm] +\rechteck{gruen}{\operatorname{dn}(u,k)} +\nullstelle{(1,1)}{gruen} +\pol{(-1,1)}{gruen} +\node at (-1,-1) {$1$}; +\node at (1,-1) {$k'$}; +\node at (1,1) {$0$}; +\node at (-1,1) {$\infty$}; +\end{scope} + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/110-elliptisch/images/ellselection.pdf b/buch/chapters/110-elliptisch/images/ellselection.pdf Binary files differnew file mode 100644 index 0000000..7c98db1 --- /dev/null +++ b/buch/chapters/110-elliptisch/images/ellselection.pdf diff --git a/buch/chapters/110-elliptisch/images/ellselection.tex b/buch/chapters/110-elliptisch/images/ellselection.tex new file mode 100644 index 0000000..d8afeb1 --- /dev/null +++ b/buch/chapters/110-elliptisch/images/ellselection.tex @@ -0,0 +1,141 @@ +% +% ellselection.tex -- Wahl einer elliptischen Funktion +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input{rechteckpfade2.tex} + +\def\l{0.45} +\pgfmathparse{\l*72/2.54} +\xdef\L{\pgfmathresult} + +\pgfmathparse{4.1/\xmax} +\xdef\dx{\pgfmathresult} +\xdef\dy{\dx} + +\def\sx{4.1} +\pgfmathparse{\sx*72/2.54} +\xdef\Sx{\pgfmathresult} + +\pgfmathparse{\dx*\ymax} +\xdef\sy{\pgfmathresult} +\pgfmathparse{\sy*72/2.54} +\xdef\Sy{\pgfmathresult} + +\pgfmathparse{\sx/2-\l} +\xdef\linksx{\pgfmathresult} +\pgfmathparse{\sy/2-\l} +\xdef\linksy{\pgfmathresult} + +\pgfmathparse{\sx/2+2*\l} +\xdef\rechtsx{\pgfmathresult} +\pgfmathparse{\sy/2} +\xdef\rechtsy{\pgfmathresult} + +\begin{scope} + \clip (-\sx,-\sy) rectangle (\sx,\sy); + \begin{scope}[xshift={-\Sx}] + \hintergrund + \netz{0.7pt} + \end{scope} + \begin{scope}[xshift={\Sx}] + \hintergrund + \netz{0.7pt} + \end{scope} +\end{scope} + +\fill[color=red!14,opacity=0.7] ({-\sx},0) rectangle (\sx,\sy); +\fill[color=blue!14,opacity=0.7] ({-\sx},{-\sy}) rectangle (\sx,0); +\fill[color=yellow!40,opacity=0.5] (0,0) rectangle (\sx,\sy); + +\draw (-\sx,-\sy) rectangle (\sx,\sy); + +\draw[->] ({-1.4*\sx},0) -- ({1.4*\sx},0) coordinate[label={$\Re u$}]; +\draw[->] (0,{-\sy-1}) -- (0,{\sy+1}) coordinate[label={right:$\Im u$}]; + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\draw[->,line width=1.9pt,color=darkgreen] + (\sx,0) to[out=180,in=-79] (\linksx,\linksy); +\draw[->,line width=1.9pt,color=darkgreen] + (\sx,{\sy-\l}) to[out=-90,in=0] (\rechtsx,\rechtsy); + +\def\rect#1#2{ + \fill[color=white] (-\l,-\l) rectangle (\l,\l); + #2 + \draw (-\l,-\l) rectangle (\l,\l); + \node at (0,0) {\Huge #1\strut}; +} + +\def\kreuz{ + \begin{scope} + \clip ({-\l},{-\l}) rectangle ({\l},{\l}); + \fill[color=white] ({-2*\l},{-2*\l}) rectangle ({2*\l},{2*\l}); + \draw[color=darkgreen!30,line width=3pt] (-\l,-\l) -- (\l,\l); + \draw[color=darkgreen!30,line width=3pt] (-\l,\l) -- (\l,-\l); + \end{scope} +} + +\def\kreis{ + \begin{scope} + \clip ({-\l},{-\l}) rectangle ({\l},{\l}); + \fill[color=white] ({-2*\l},{-2*\l}) rectangle ({2*\l},{2*\l}); + \draw[color=darkgreen!30,line width=3pt] + (0,0) circle[radius={\l*(\L-1.5)/\L}]; + \end{scope} +} + +\begin{scope}[xshift={0},yshift={0}] + \rect{s}{} +\end{scope} + +\begin{scope}[xshift={\Sx},yshift={0}] + \rect{c}{\kreis} +\end{scope} + +\begin{scope}[xshift={\Sx},yshift={\Sy}] + \rect{d}{\kreuz} +\end{scope} + +\begin{scope}[xshift={0},yshift={\Sy}] + \rect{n}{} +\end{scope} + +\node at ({-\l+0.1},{\sy+\l-0.1}) [above left] {$iK'\mathstrut$}; +\node at ({-\l+0.1},{-\l+0.1}) [below left] {$0\mathstrut$}; +\node at ({\sx+\l-0.1},{-\l+0.1}) [below right] {$K\mathstrut$}; +\node at ({\sx+\l-0.1},{\sy+\l-0.1}) [above right] {$K+iK'\mathstrut$}; +\node at ({-\sx},0) [below left] {$-K\mathstrut$}; +\node at (0,{-\sy+0.05}) [below left] {$-iK'\mathstrut$}; +\node at ({\sx-0.1},{-\sy+0.1}) [below right] {$K-iK'\mathstrut$}; +\node at ({-\sx+0.1},{-\sy+0.1}) [below left] {$-K-iK'\mathstrut$}; +\node at ({-\sx+0.1},{\sy-0.1}) [above left] {$-K+iK'\mathstrut$}; + +\begin{scope}[xshift={-\L+0.5*\Sx},yshift={0.5*\Sy}] + \node at ({-\l},{\l-0.1}) [above] {Nullstelle\strut}; + \kreis + \node[color=darkgreen] at (0,0) {\Huge c\strut}; + \draw[line width=0.2pt] (-\l,-\l) rectangle (\l,\l); +\end{scope} + +\begin{scope}[xshift={\L+0.5*\Sx},yshift={0.5*\Sy}] + \node at ({\l},{\l-0.1}) [above] {Pol\strut}; + \kreuz + \node[color=darkgreen] at (0,0) {\Huge d\strut}; + \draw[line width=0.2pt] (-\l,-\l) rectangle (\l,\l); +\end{scope} + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/110-elliptisch/images/jacobiplots.pdf b/buch/chapters/110-elliptisch/images/jacobiplots.pdf Binary files differindex d11bde8..eb9d7f1 100644 --- a/buch/chapters/110-elliptisch/images/jacobiplots.pdf +++ b/buch/chapters/110-elliptisch/images/jacobiplots.pdf diff --git a/buch/chapters/110-elliptisch/images/jacobiplots.tex b/buch/chapters/110-elliptisch/images/jacobiplots.tex index 4fc572e..fec04fc 100644 --- a/buch/chapters/110-elliptisch/images/jacobiplots.tex +++ b/buch/chapters/110-elliptisch/images/jacobiplots.tex @@ -31,7 +31,7 @@ \fill[color=gray!50] (-0.2,1.65) rectangle (7.0,2.3); \draw[line width=0.5pt] (-0.2,-6) rectangle (7.0,2.3); \begin{scope}[scale=0.5] -\node at (6.5,{\dy+2}) {$m = #1$}; +\node at (6.5,{\dy+2}) {$k^2 = #1$}; \end{scope} } \def\jacobiplot#1#2#3#4{ diff --git a/buch/chapters/110-elliptisch/images/kegelpara.pdf b/buch/chapters/110-elliptisch/images/kegelpara.pdf Binary files differnew file mode 100644 index 0000000..2bbd428 --- /dev/null +++ b/buch/chapters/110-elliptisch/images/kegelpara.pdf diff --git a/buch/chapters/110-elliptisch/images/kegelpara.pov b/buch/chapters/110-elliptisch/images/kegelpara.pov new file mode 100644 index 0000000..13b66cc --- /dev/null +++ b/buch/chapters/110-elliptisch/images/kegelpara.pov @@ -0,0 +1,329 @@ +// +// kegelpara.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#version 3.7; +#include "colors.inc" + +#declare O = <0,0,0>; + +global_settings { + assumed_gamma 1 +} + +#declare imagescale = 0.08; + +camera { + location <28, 20, -40> + look_at <0, 0.1, 0> + right x * imagescale + up y * imagescale +} + +light_source { + <30, 10, -40> color White + area_light <1,0,0> <0,0,1>, 10, 10 + adaptive 1 + jitter +} + +sky_sphere { + pigment { + color rgb<1,1,1> + } +} + + +// +// draw an arrow from <from> to <to> with thickness <arrowthickness> with +// color <c> +// +#macro arrow(from, to, arrowthickness, c) +#declare arrowdirection = vnormalize(to - from); +#declare arrowlength = vlength(to - from); +union { + sphere { + from, 1.1 * arrowthickness + } + cylinder { + from, + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + arrowthickness + } + cone { + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + 2 * arrowthickness, + to, + 0 + } + pigment { + color c + } + finish { + specular 0.9 + metallic + } +} +#end + +arrow(<-2.6,0,0>,<2.5,0,0>,0.02,White) +arrow(<0,-2,0>,<0,2.3,0>,0.02,White) +arrow(<0,0,-3.2>,<0,0,3.7>,0.02,White) + +#declare epsilon = 0.0001; +#declare l = 1.5; + +#macro Kegel(farbe) +union { + difference { + cone { O, 0, <l, 0, 0>, l } + cone { O + <epsilon, 0,0>, 0, <l+epsilon, 0, 0>, l } + } + difference { + cone { O, 0, <-l, 0, 0>, l } + cone { O + <-epsilon, 0, 0>, 0, <-l-epsilon, 0, 0>, l } + } + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } +} +#end + +#macro Kegelpunkt(xx, phi) + < xx, xx * sin(phi), xx * cos(phi) > +#end + +#macro Kegelgitter(farbe, r) +union { + #declare s = 0; + #declare smax = 2 * pi; + #declare sstep = pi / 6; + #while (s < smax - sstep/2) + cylinder { Kegelpunkt(l, s), Kegelpunkt(-l, s), r } + #declare s = s + sstep; + #end + #declare phimax = 2 * pi; + #declare phisteps = 100; + #declare phistep = phimax / phisteps; + #declare xxstep = 0.5; + #declare xxmax = 2; + #declare xx = xxstep; + #while (xx < xxmax - xxstep/2) + #declare phi = 0; + #while (phi < phimax - phistep/2) + cylinder { + Kegelpunkt(xx, phi), + Kegelpunkt(xx, phi + phistep), + r + } + sphere { Kegelpunkt(xx, phi), r } + cylinder { + Kegelpunkt(-xx, phi), + Kegelpunkt(-xx, phi + phistep), + r + } + sphere { Kegelpunkt(-xx, phi), r } + #declare phi = phi + phistep; + #end + #declare xx = xx + xxstep; + #end + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } +} +#end + +#macro F(w, r) + <r * cos(w), r * r/sqrt(2), r * sin(w) > +#end + +#macro Paraboloid(farbe) +mesh { + #declare phi = 0; + #declare phimax = 2 * pi; + #declare phisteps = 100; + #declare phistep = pi / phisteps; + #declare rsteps = 100; + #declare rmax = 1.5; + #declare rstep = rmax / rsteps; + #while (phi < phimax - phistep/2) + #declare r = rstep; + #declare h = r * r / sqrt(2); + triangle { + O, F(phi, r), F(phi + phistep, r) + } + #while (r < rmax - rstep/2) + // ring + triangle { + F(phi, r), + F(phi + phistep, r), + F(phi + phistep, r + rstep) + } + triangle { + F(phi, r), + F(phi + phistep, r + rstep), + F(phi, r + rstep) + } + #declare r = r + rstep; + #end + #declare phi = phi + phistep; + #end + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } +} +#end + +#macro Paraboloidgitter(farbe, gr) +union { + #declare phi = 0; + #declare phimax = 2 * pi; + #declare phistep = pi / 6; + + #declare rmax = 1.5; + #declare rsteps = 100; + #declare rstep = rmax / rsteps; + + #while (phi < phimax - phistep/2) + #declare r = rstep; + #while (r < rmax - rstep/2) + cylinder { F(phi, r), F(phi, r + rstep), gr } + sphere { F(phi, r), gr } + #declare r = r + rstep; + #end + #declare phi = phi + phistep; + #end + + #declare rstep = 0.2; + #declare r = rstep; + + #declare phisteps = 100; + #declare phistep = phimax / phisteps; + #while (r < rmax) + #declare phi = 0; + #while (phi < phimax - phistep/2) + cylinder { F(phi, r), F(phi + phistep, r), gr } + sphere { F(phi, r), gr } + #declare phi = phi + phistep; + #end + #declare r = r + rstep; + #end + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } +} +#end + +#declare a = sqrt(2); +#macro G(phi,sg) + < a*sg*sqrt(cos(2*phi))*cos(phi), a*cos(2*phi), a*sqrt(cos(2*phi))*sin(phi)> +#end + +#macro Lemniskate3D(s, farbe) +union { + #declare phi = -pi / 4; + #declare phimax = pi / 4; + #declare phisteps = 100; + #declare phistep = phimax / phisteps; + #while (phi < phimax - phistep/2) + sphere { G(phi,1), s } + cylinder { G(phi,1), G(phi+phistep,1), s } + sphere { G(phi,-1), s } + cylinder { G(phi,-1), G(phi+phistep,-1), s } + #declare phi = phi + phistep; + #end + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } +} +#end + +#declare a = sqrt(2); +#macro G2(phi,sg) + a * sqrt(cos(2*phi)) * < sg * cos(phi), 0, sin(phi)> +#end + +#macro Lemniskate(s, farbe) +union { + #declare phi = -pi / 4; + #declare phimax = pi / 4; + #declare phisteps = 100; + #declare phistep = phimax / phisteps; + #while (phi < phimax - phistep/2) + sphere { G2(phi,1), s } + cylinder { G2(phi,1), G2(phi+phistep,1), s } + sphere { G2(phi,-1), s } + cylinder { G2(phi,-1), G2(phi+phistep,-1), s } + #declare phi = phi + phistep; + #end + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } +} +#end + +#macro Projektion(s, farbe) +union { + #declare phistep = pi / 16; + #declare phi = -pi / 4 + phistep; + #declare phimax = pi / 4; + #while (phi < phimax - phistep/2) + cylinder { G(phi, 1), G2(phi, 1), s } + cylinder { G(phi, -1), G2(phi, -1), s } + #declare phi = phi + phistep; + #end + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } +} +#end + +#declare kegelfarbe = rgbf<0.2,0.6,0.2,0.2>; +#declare kegelgitterfarbe = rgb<0.2,0.8,0.2>; +#declare paraboloidfarbe = rgbf<0.2,0.6,1.0,0.2>; +#declare paraboloidgitterfarbe = rgb<0.4,1,1>; + +//intersection { +// union { + Paraboloid(paraboloidfarbe) + Paraboloidgitter(paraboloidgitterfarbe, 0.004) + + Kegel(kegelfarbe) + Kegelgitter(kegelgitterfarbe, 0.004) +// } +// plane { <0, 0, -1>, 0.6 } +//} + + +Lemniskate3D(0.02, rgb<0.8,0.0,0.8>) +Lemniskate(0.02, Red) +Projektion(0.01, Yellow) diff --git a/buch/chapters/110-elliptisch/images/kegelpara.tex b/buch/chapters/110-elliptisch/images/kegelpara.tex new file mode 100644 index 0000000..8fcefbf --- /dev/null +++ b/buch/chapters/110-elliptisch/images/kegelpara.tex @@ -0,0 +1,41 @@ +% +% kegelpara.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{4} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=8cm]{kegelpara.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (4.1,-1.4) {$X$}; +\node at (0.2,3.8) {$Z$}; +\node at (4.0,1.8) {$Y$}; + +\end{tikzpicture} + +\end{document} + diff --git a/buch/chapters/110-elliptisch/images/lemniskate.pdf b/buch/chapters/110-elliptisch/images/lemniskate.pdf Binary files differindex 063a3e1..9e02c3c 100644 --- a/buch/chapters/110-elliptisch/images/lemniskate.pdf +++ b/buch/chapters/110-elliptisch/images/lemniskate.pdf diff --git a/buch/chapters/110-elliptisch/images/lemniskate.tex b/buch/chapters/110-elliptisch/images/lemniskate.tex index f74a81f..fe90631 100644 --- a/buch/chapters/110-elliptisch/images/lemniskate.tex +++ b/buch/chapters/110-elliptisch/images/lemniskate.tex @@ -27,13 +27,16 @@ \draw[color=red,line width=2.0pt] plot[domain=45:\a,samples=100] ({\x}:{sqrt(2*cos(2*\x))}); -\draw[->] (-1.5,0) -- (1.5,0) coordinate[label={$x$}]; -\draw[->] (0,-0.7) -- (0,0.7) coordinate[label={right:$y$}]; +\draw[->] (-1.5,0) -- (1.7,0) coordinate[label={$X$}]; +\draw[->] (0,-0.7) -- (0,0.7) coordinate[label={right:$Y$}]; \fill[color=white] (1,0) circle[radius=0.02]; \draw (1,0) circle[radius=0.02]; +\node at ({1},0) [below] {$\displaystyle a\mathstrut$}; + \fill[color=white] (-1,0) circle[radius=0.02]; \draw (-1,0) circle[radius=0.02]; +\node at ({-1},0) [below] {$\displaystyle\llap{$-$}a\mathstrut$}; \node[color=blue] at (\a:{0.6*sqrt(2*cos(2*\a))}) [below] {$r$}; \node[color=red] at ({\b}:{sqrt(2*cos(2*\b))}) [above] {$s$}; @@ -41,6 +44,14 @@ \fill[color=white] (\a:{sqrt(2*cos(2*\a))}) circle[radius=0.02]; \draw[color=red] (\a:{sqrt(2*cos(2*\a))}) circle[radius=0.02]; +\draw ({sqrt(2)},{-0.1/\skala}) -- ({sqrt(2)},{0.1/\skala}); +\node at ({sqrt(2)},0) [below right] + {$\displaystyle a\mathstrut\sqrt{2}$}; +\draw ({-sqrt(2)},{-0.1/\skala}) -- ({-sqrt(2)},{0.1/\skala}); +\node at ({-sqrt(2)},0) [below left] + {$\displaystyle -a\mathstrut\sqrt{2}$}; + + \end{tikzpicture} \end{document} diff --git a/buch/chapters/110-elliptisch/images/lemnispara.cpp b/buch/chapters/110-elliptisch/images/lemnispara.cpp new file mode 100644 index 0000000..6f4d55d --- /dev/null +++ b/buch/chapters/110-elliptisch/images/lemnispara.cpp @@ -0,0 +1,126 @@ +/* + * lemnispara.cpp -- Display parametrisation of the lemniskate + * + * (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule + */ +#include <cstdio> +#include <cstdlib> +#include <cmath> +#include <gsl/gsl_sf_elljac.h> +#include <iostream> +#include <fstream> +#include <map> +#include <string.h> +#include <string> + +const static double s = sqrt(2); +const static double k = 1 / s; +const static double m = k * k; + +typedef std::pair<double, double> point_t; + +point_t operator*(const point_t& p, double s) { + return point_t(s * p.first, s * p.second); +} + +static double norm(const point_t& p) { + return hypot(p.first, p.second); +} + +static point_t normalize(const point_t& p) { + return p * (1/norm(p)); +} + +static point_t normal(const point_t& p) { + return std::make_pair(p.second, -p.first); +} + +class lemniscate : public point_t { + double sn, cn, dn; +public: + lemniscate(double t) { + gsl_sf_elljac_e(t, m, &sn, &cn, &dn); + first = s * cn * dn; + second = cn * sn; + } + point_t tangent() const { + return std::make_pair(-s * sn * (1.5 - sn * sn), + dn * (1 - 2 * sn * sn)); + } + point_t unittangent() const { + return normalize(tangent()); + } + point_t normal() const { + return ::normal(tangent()); + } + point_t unitnormal() const { + return ::normal(unittangent()); + } +}; + +std::ostream& operator<<(std::ostream& out, const point_t& p) { + char b[1024]; + snprintf(b, sizeof(b), "({%.4f*\\dx},{%.4f*\\dy})", p.first, p.second); + out << b; + return out; +} + +int main(int argc, char *argv[]) { + std::ofstream out("lemnisparadata.tex"); + + // the curve + double tstep = 0.01; + double tmax = 4.05; + out << "\\def\\lemnispath{ "; + out << lemniscate(0); + for (double t = tstep; t < tmax; t += tstep) { + out << std::endl << "\t" << "-- " << lemniscate(t); + } + out << std::endl; + out << "}" << std::endl; + + out << "\\def\\lemnispathmore{ "; + out << lemniscate(tmax); + double tmax2 = 7.5; + for (double t = tmax + tstep; t < tmax2; t += tstep) { + out << std::endl << "\t" << "-- " << lemniscate(t); + } + out << std::endl; + out << "}" << std::endl; + + // individual points + tstep = 0.2; + int i = 0; + char name[3]; + strcpy(name, "L0"); + for (double t = 0; t <= tmax; t += tstep) { + char c = 'A' + i++; + char buffer[128]; + lemniscate l(t); + name[0] = 'L'; + name[1] = c; + out << "\\coordinate (" << name << ") at "; + out << l << ";" << std::endl; + name[0] = 'T'; + out << "\\coordinate (" << name << ") at "; + out << l.unittangent() << ";" << std::endl; + name[0] = 'N'; + out << "\\coordinate (" << name << ") at "; + out << l.unitnormal() << ";" << std::endl; + name[0] = 'C'; + out << "\\def\\" << name << "{ "; + out << "\\node[color=red] at ($(L" << c << ")+0.06*(N" << c << ")$) "; + out << "[rotate={"; + double w = 180 * atan2(l.unitnormal().second, + l.unitnormal().first) / M_PI; + snprintf(buffer, sizeof(buffer), "%.1f", w); + out << buffer; + out << "-90}]"; + snprintf(buffer, sizeof(buffer), "%.1f", t); + out << " {$\\scriptstyle " << buffer << "$};" << std::endl; + out << "}" << std::endl; + } + + out.close(); + return EXIT_SUCCESS; +} diff --git a/buch/chapters/110-elliptisch/images/lemnispara.pdf b/buch/chapters/110-elliptisch/images/lemnispara.pdf Binary files differnew file mode 100644 index 0000000..16731d3 --- /dev/null +++ b/buch/chapters/110-elliptisch/images/lemnispara.pdf diff --git a/buch/chapters/110-elliptisch/images/lemnispara.tex b/buch/chapters/110-elliptisch/images/lemnispara.tex new file mode 100644 index 0000000..c6e32d7 --- /dev/null +++ b/buch/chapters/110-elliptisch/images/lemnispara.tex @@ -0,0 +1,94 @@ +% +% lemnispara.tex -- parametrization of the lemniscate +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} +\def\skala{1} + +\begin{tikzpicture}[>=latex,thick,scale=\skala] +\def\dx{4} +\def\dy{4} +\input{lemnisparadata.tex} + +% add image content here +\draw[color=red!20,line width=1.4pt] \lemnispathmore; +\draw[color=red,line width=1.4pt] \lemnispath; + +\draw[->] ({-1.6*\dx},0) -- ({1.8*\dx},0) coordinate[label={$X$}]; +\draw[->] (0,{-0.7*\dy}) -- (0,{0.7*\dy}) coordinate[label={right:$Y$}]; + +\draw ({1.5*\dx},-0.05) -- ({1.5*\dx},0.05); +\draw ({\dx},-0.05) -- ({\dx},0.05); +\draw ({0.5*\dx},-0.05) -- ({0.5*\dx},0.05); +\draw ({-0.5*\dx},-0.05) -- ({-0.5*\dx},0.05); +\draw ({-\dx},-0.05) -- ({-\dx},0.05); +\draw ({-1.5*\dx},-0.05) -- ({-1.5*\dx},0.05); +\draw (-0.05,{0.5*\dy}) -- (0.05,{0.5*\dy}); +\draw (-0.05,{-0.5*\dy}) -- (0.05,{-0.5*\dy}); + +\node at ({\dx},0) [above] {$1$}; +\node at ({-\dx},0) [above] {$-1$}; +\node at ({-0.5*\dx},0) [above] {$-\frac12$}; +\node at ({0.5*\dx},0) [above] {$\frac12$}; +\node at (0,{0.5*\dy}) [left] {$\frac12$}; +\node at (0,{-0.5*\dy}) [left] {$-\frac12$}; + +\def\s{0.02} + +\draw[color=red] ($(LA)-\s*(NA)$) -- ($(LA)+\s*(NA)$); +\draw[color=red] ($(LB)-\s*(NB)$) -- ($(LB)+\s*(NB)$); +\draw[color=red] ($(LC)-\s*(NC)$) -- ($(LC)+\s*(NC)$); +\draw[color=red] ($(LD)-\s*(ND)$) -- ($(LD)+\s*(ND)$); +\draw[color=red] ($(LE)-\s*(NE)$) -- ($(LE)+\s*(NE)$); +\draw[color=red] ($(LF)-\s*(NF)$) -- ($(LF)+\s*(NF)$); +\draw[color=red] ($(LG)-\s*(NG)$) -- ($(LG)+\s*(NG)$); +\draw[color=red] ($(LH)-\s*(NH)$) -- ($(LH)+\s*(NH)$); +\draw[color=red] ($(LI)-\s*(NI)$) -- ($(LI)+\s*(NI)$); +\draw[color=red] ($(LJ)-\s*(NJ)$) -- ($(LJ)+\s*(NJ)$); +\draw[color=red] ($(LK)-\s*(NK)$) -- ($(LK)+\s*(NK)$); +\draw[color=red] ($(LL)-\s*(NL)$) -- ($(LL)+\s*(NL)$); +\draw[color=red] ($(LM)-\s*(NM)$) -- ($(LM)+\s*(NM)$); +\draw[color=red] ($(LN)-\s*(NN)$) -- ($(LN)+\s*(NN)$); +\draw[color=red] ($(LO)-\s*(NO)$) -- ($(LO)+\s*(NO)$); +\draw[color=red] ($(LP)-\s*(NP)$) -- ($(LP)+\s*(NP)$); +\draw[color=red] ($(LQ)-\s*(NQ)$) -- ($(LQ)+\s*(NQ)$); +\draw[color=red] ($(LR)-\s*(NR)$) -- ($(LR)+\s*(NR)$); +\draw[color=red] ($(LS)-\s*(NS)$) -- ($(LS)+\s*(NS)$); +\draw[color=red] ($(LT)-\s*(NT)$) -- ($(LT)+\s*(NT)$); +\draw[color=red] ($(LU)-\s*(NU)$) -- ($(LU)+\s*(NU)$); + +\CB +\CC +\CD +\CE +\CF +\CG +\CH +\CI +\CJ +\CK +\CL +\CM +\CN +\CO +\CP +\CQ +\CR +\CS +\CT +\CU + +\fill[color=blue] (LA) circle[radius=0.07]; +\node[color=blue] at (LA) [above right] {$S$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/110-elliptisch/images/rechteck.cpp b/buch/chapters/110-elliptisch/images/rechteck.cpp index c65ae0f..b5ad0ec 100644 --- a/buch/chapters/110-elliptisch/images/rechteck.cpp +++ b/buch/chapters/110-elliptisch/images/rechteck.cpp @@ -163,7 +163,7 @@ curvetracer::curve_t curvetracer::trace(const std::complex<double>& startz, } catch (const toomanyiterations& x) { std::cerr << "iterations exceeded after "; std::cerr << result.size(); - std::cerr << " points"; + std::cerr << " points" << std::endl; maxsteps = 0; } } @@ -230,7 +230,7 @@ void curvedrawer::operator()(const curvetracer::curve_t& curve) { double first = true; for (auto z : curve) { if (first) { - *_out << "\\draw[color=" << _color << "] "; + *_out << "\\draw[color=" << _color << ",line width=#1] "; first = false; } else { *_out << std::endl << " -- "; @@ -244,6 +244,7 @@ static struct option longopts[] = { { "outfile", required_argument, NULL, 'o' }, { "k", required_argument, NULL, 'k' }, { "deltax", required_argument, NULL, 'd' }, +{ "vsteps", required_argument, NULL, 'v' }, { NULL, 0, NULL, 0 } }; @@ -252,7 +253,8 @@ static struct option longopts[] = { */ int main(int argc, char *argv[]) { double k = 0.625; - double deltax = 0.2; + double Deltax = 0.2; + int vsteps = 4; int c; int longindex; @@ -261,7 +263,7 @@ int main(int argc, char *argv[]) { &longindex))) switch (c) { case 'd': - deltax = std::stod(optarg); + Deltax = std::stod(optarg); break; case 'o': outfilename = std::string(optarg); @@ -269,6 +271,9 @@ int main(int argc, char *argv[]) { case 'k': k = std::stod(optarg); break; + case 'v': + vsteps = std::stoi(optarg); + break; } double kprime = integrand::kprime(k); @@ -293,15 +298,21 @@ int main(int argc, char *argv[]) { curvetracer ct(f); // fill + (*cdp->out()) << "\\def\\hintergrund{" << std::endl; (*cdp->out()) << "\\fill[color=red!10] ({" << (-xmax) << "*\\dx},0) " << "rectangle ({" << xmax << "*\\dx},{" << ymax << "*\\dy});" << std::endl; (*cdp->out()) << "\\fill[color=blue!10] ({" << (-xmax) << "*\\dx},{" << (-ymax) << "*\\dy}) rectangle ({" << xmax << "*\\dx},0);" << std::endl; + (*cdp->out()) << "}" << std::endl; + + // macro for grid + (*cdp->out()) << "\\def\\netz#1{" << std::endl; // "circles" std::complex<double> dir(0.01, 0); + double deltax = Deltax; for (double im = deltax; im < 3; im += deltax) { std::complex<double> startz(0, im); std::complex<double> startw = ct.startpoint(startz); @@ -316,9 +327,9 @@ int main(int argc, char *argv[]) { } // imaginary axis - (*cdp->out()) << "\\draw[color=red] (0,0) -- (0,{" << ymax + (*cdp->out()) << "\\draw[color=red,line width=#1] (0,0) -- (0,{" << ymax << "*\\dy});" << std::endl; - (*cdp->out()) << "\\draw[color=blue] (0,0) -- (0,{" << (-ymax) + (*cdp->out()) << "\\draw[color=blue,line width=#1] (0,0) -- (0,{" << (-ymax) << "*\\dy});" << std::endl; // arguments between 0 and 1 @@ -353,7 +364,8 @@ int main(int argc, char *argv[]) { // arguments between 1 and 1/k { - for (double x0 = 1 + deltax; x0 < 1/k; x0 += deltax) { + deltax = (1/k - 1) / vsteps; + for (double x0 = 1 + deltax; x0 < 1/k + 0.00001; x0 += deltax) { double y0 = sqrt(1-1/(x0*x0))/kprime; //std::cout << "y0 = " << y0 << std::endl; double y = gsl_sf_ellint_F(asin(y0), kprime, @@ -389,8 +401,9 @@ int main(int argc, char *argv[]) { // arguments larger than 1/k { + deltax = Deltax; dir = std::complex<double>(0, 0.01); - double x0 = 1; + double x0 = 1/k; while (x0 <= 1/k + 0.0001) { x0 += deltax; } for (; x0 < 4; x0 += deltax) { std::complex<double> startz(x0); @@ -407,6 +420,8 @@ int main(int argc, char *argv[]) { } } + (*cdp->out()) << "}" << std::endl; + // border (*cdp->out()) << "\\def\\xmax{" << xmax << "}" << std::endl; (*cdp->out()) << "\\def\\ymax{" << ymax << "}" << std::endl; diff --git a/buch/chapters/110-elliptisch/images/rechteck.pdf b/buch/chapters/110-elliptisch/images/rechteck.pdf Binary files differindex 6209897..46f2376 100644 --- a/buch/chapters/110-elliptisch/images/rechteck.pdf +++ b/buch/chapters/110-elliptisch/images/rechteck.pdf diff --git a/buch/chapters/110-elliptisch/images/rechteck.tex b/buch/chapters/110-elliptisch/images/rechteck.tex index 622a9e9..12535ba 100644 --- a/buch/chapters/110-elliptisch/images/rechteck.tex +++ b/buch/chapters/110-elliptisch/images/rechteck.tex @@ -18,6 +18,8 @@ \def\dy{3} \input{rechteckpfade.tex} +\hintergrund +\netz{0.7pt} \begin{scope} \clip ({-\xmax*\dx},{-\ymax*\dy}) rectangle ({\xmax*\dx},{\ymax*\dy}); diff --git a/buch/chapters/110-elliptisch/images/slcl.cpp b/buch/chapters/110-elliptisch/images/slcl.cpp new file mode 100644 index 0000000..8584e94 --- /dev/null +++ b/buch/chapters/110-elliptisch/images/slcl.cpp @@ -0,0 +1,128 @@ +/* + * slcl.cpp + * + * (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule + */ +#include <cstdlib> +#include <cstdio> +#include <cmath> +#include <iostream> +#include <fstream> +#include <sstream> +#include <getopt.h> +#include <vector> +#include <gsl/gsl_sf_elljac.h> + +namespace slcl { + +static struct option longopts[] { +{ "outfile", required_argument, NULL, 'o' }, +{ "a", required_argument, NULL, 'a' }, +{ "b", required_argument, NULL, 'b' }, +{ "steps", required_argument, NULL, 'n' }, +{ NULL, 0, NULL, 0 } +}; + +class plot { + typedef std::pair<double, double> point_t; + typedef std::vector<point_t> curve_t; + curve_t _sl; + curve_t _cl; + double _a; + double _b; + int _steps; +public: + double a() const { return _a; } + double b() const { return _b; } + int steps() const { return _steps; } +public: + plot(double a, double b, int steps) : _a(a), _b(b), _steps(steps) { + double l = sqrt(2); + double k = 1 / l; + double m = k * k; + double h = (b - a) / steps; + for (int i = 0; i <= steps; i++) { + double x = a + h * i; + double sn, cn, dn; + gsl_sf_elljac_e(x, m, &sn, &cn, &dn); + _sl.push_back(std::make_pair(l * x, k * sn / dn)); + _cl.push_back(std::make_pair(l * x, cn)); + } + } +private: + std::string point(const point_t p) const { + char buffer[128]; + snprintf(buffer, sizeof(buffer), "({%.4f*\\dx},{%.4f*\\dy})", + p.first, p.second); + return std::string(buffer); + } + std::string path(const curve_t& curve) const { + std::ostringstream out; + auto i = curve.begin(); + out << point(*(i++)); + do { + out << std::endl << " -- " << point(*(i++)); + } while (i != curve.end()); + out.flush(); + return out.str(); + } +public: + std::string slpath() const { + return path(_sl); + } + std::string clpath() const { + return path(_cl); + } +}; + +/** + * \brief Main function for the slcl program + */ +int main(int argc, char *argv[]) { + int longindex; + int c; + double a = 0; + double b = 10; + int steps = 100; + std::ostream *out = &std::cout; + while (EOF != (c = getopt_long(argc, argv, "a:b:o:n:", + longopts, &longindex))) + switch (c) { + case 'a': + a = std::stod(optarg); + break; + case 'b': + b = std::stod(optarg) / sqrt(2); + break; + case 'n': + steps = std::stol(optarg); + break; + case 'o': + out = new std::ofstream(optarg); + break; + } + + plot p(a, b, steps); + (*out) << "\\def\\slpath{ " << p.slpath(); + (*out) << std::endl << " }" << std::endl; + (*out) << "\\def\\clpath{ " << p.clpath(); + (*out) << std::endl << " }" << std::endl; + + out->flush(); + //out->close(); + return EXIT_SUCCESS; +} + +} // namespace slcl + +int main(int argc, char *argv[]) { + try { + return slcl::main(argc, argv); + } catch (const std::exception& e) { + std::cerr << "terminated by exception: " << e.what(); + std::cerr << std::endl; + } catch (...) { + std::cerr << "terminated by unknown exception" << std::endl; + } + return EXIT_FAILURE; +} diff --git a/buch/chapters/110-elliptisch/images/slcl.pdf b/buch/chapters/110-elliptisch/images/slcl.pdf Binary files differnew file mode 100644 index 0000000..71645e3 --- /dev/null +++ b/buch/chapters/110-elliptisch/images/slcl.pdf diff --git a/buch/chapters/110-elliptisch/images/slcl.tex b/buch/chapters/110-elliptisch/images/slcl.tex new file mode 100644 index 0000000..0af1027 --- /dev/null +++ b/buch/chapters/110-elliptisch/images/slcl.tex @@ -0,0 +1,88 @@ +% +% tikztemplate.tex -- template for standalon tikz images +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\input{slcldata.tex} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +% add image content here +\def\lemniscateconstant{2.6220575542} +\pgfmathparse{(3.1415926535/2)/\lemniscateconstant} +\xdef\scalechange{\pgfmathresult} + +\pgfmathparse{\scalechange*(180/3.1415926535)} +\xdef\ts{\pgfmathresult} + +\def\dx{1} +\def\dy{3} + +\draw[line width=0.3pt] + ({\lemniscateconstant*\dx},0) + -- + ({\lemniscateconstant*\dx},{1*\dy}); +\draw[line width=0.3pt] + ({2*\lemniscateconstant*\dx},0) + -- + ({2*\lemniscateconstant*\dx},{-1*\dy}); +\draw[line width=0.3pt] + ({3*\lemniscateconstant*\dx},0) + -- + ({3*\lemniscateconstant*\dx},{-1*\dy}); +\draw[line width=0.3pt] + ({4*\lemniscateconstant*\dx},0) + -- + ({4*\lemniscateconstant*\dx},{1*\dy}); +\draw[line width=0.3pt] + ({5*\lemniscateconstant*\dx},0) + -- + ({5*\lemniscateconstant*\dx},{1*\dy}); + +\draw[color=red!40,line width=1.4pt] + plot[domain=0:13,samples=200] ({\x},{\dy*sin(\ts*\x)}); +\draw[color=blue!40,line width=1.4pt] + plot[domain=0:13,samples=200] ({\x},{\dy*cos(\ts*\x)}); + +\draw[color=red,line width=1.4pt] \slpath; +\draw[color=blue,line width=1.4pt] \clpath; + +\draw[->] (0,{-1*\dy-0.1}) -- (0,{1*\dy+0.4}) coordinate[label={right:$r$}]; +\draw[->] (-0.1,0) -- (13.6,0) coordinate[label={$s$}]; + +\foreach \i in {1,2,3,4,5}{ + \draw ({\lemniscateconstant*\i},-0.1) -- ({\lemniscateconstant*\i},0.1); +} +\node at ({\lemniscateconstant*\dx},0) [below left] {$\frac{\varpi}2\mathstrut$}; +\node at ({2*\lemniscateconstant*\dx},0) [below left] {$\varpi\mathstrut$}; +\node at ({3*\lemniscateconstant*\dx},0) [below right] {$\frac{3\varpi}2\mathstrut$}; +\node at ({4*\lemniscateconstant*\dx},0) [below right] {$2\varpi\mathstrut$}; +\node at ({5*\lemniscateconstant*\dx},0) [below left] {$\frac{5\varpi}2\mathstrut$}; + +\node[color=red] at ({1.6*\lemniscateconstant*\dx},{0.6*\dy}) + [below left] {$\operatorname{sl}(s)$}; +\node[color=red!50] at ({1.5*\lemniscateconstant*\dx},{sin(1.5*90)*\dy*0.90}) + [above right] {$\sin \bigl(\frac{\pi}{\varpi}s\bigr)$}; + +\node[color=blue] at ({1.4*\lemniscateconstant*\dx},{-0.6*\dy}) + [above right] {$\operatorname{cl}(s)$}; +\node[color=blue!50] at ({1.5*\lemniscateconstant*\dx},{cos(1.5*90)*\dy*0.90}) + [below left] {$\cos\bigl(\frac{\pi}{\varpi}s\bigr)$}; + +\draw (-0.1,{1*\dy}) -- (0.1,{1*\dy}); +\draw (-0.1,{-1*\dy}) -- (0.1,{-1*\dy}); +\node at (0,{1*\dy}) [left] {$1\mathstrut$}; +\node at (0,0) [left] {$0\mathstrut$}; +\node at (0,{-1*\dy}) [left] {$-1\mathstrut$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/110-elliptisch/images/torusschnitt.pdf b/buch/chapters/110-elliptisch/images/torusschnitt.pdf Binary files differnew file mode 100644 index 0000000..9b64ab2 --- /dev/null +++ b/buch/chapters/110-elliptisch/images/torusschnitt.pdf diff --git a/buch/chapters/110-elliptisch/images/torusschnitt.pov b/buch/chapters/110-elliptisch/images/torusschnitt.pov new file mode 100644 index 0000000..e5602df --- /dev/null +++ b/buch/chapters/110-elliptisch/images/torusschnitt.pov @@ -0,0 +1,308 @@ +// +// kegelpara.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#version 3.7; +#include "colors.inc" + +#declare O = <0,0,0>; + +global_settings { + assumed_gamma 1 +} + +#declare imagescale = 0.060; + +camera { + location <28, 20, -40> + look_at <0, 0.55, 0> + right (16/9) * x * imagescale + up y * imagescale +} + +light_source { + <30, 10, -40> color White + area_light <1,0,0> <0,0,1>, 10, 10 + adaptive 1 + jitter +} + +sky_sphere { + pigment { + color rgb<1,1,1> + } +} + + +// +// draw an arrow from <from> to <to> with thickness <arrowthickness> with +// color <c> +// +#macro arrow(from, to, arrowthickness, c) +#declare arrowdirection = vnormalize(to - from); +#declare arrowlength = vlength(to - from); +union { + sphere { + from, 1.1 * arrowthickness + } + cylinder { + from, + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + arrowthickness + } + cone { + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + 2 * arrowthickness, + to, + 0 + } + pigment { + color c + } + finish { + specular 0.9 + metallic + } +} +#end + + +#macro Ticks(tl, tr) +union { + #declare s = 1; + #while (s <= 3.1) + cylinder { <-0.5*s-tl, 0, 0>, <-0.5*s+tl, 0, 0>, tr } + cylinder { < 0.5*s-tl, 0, 0>, < 0.5*s+tl, 0, 0>, tr } + #declare s = s + 1; + #end + + #declare s = 1; + #while (s <= 4.1) + cylinder { <0, 0.5*s-tl, 0>, <0, 0.5*s+tl, 0>, tr } + #declare s = s + 1; + #end + #declare s = 1; + #while (s <= 2.1) + cylinder { <0,-0.5*s-tl, 0>, <0,-0.5*s+tl, 0>, tr } + #declare s = s + 1; + #end + + #declare s = 1; + #while (s <= 4) + cylinder { <0, 0, 0.5*s-tl>, <0, 0, 0.5*s+tl>, tr } + #declare s = s + 1; + #end + #declare s = 1; + #while (s <= 3) + cylinder { <0, 0, -0.5*s-tl>, <0, 0, -0.5*s+tl>, tr } + #declare s = s + 1; + #end + + pigment { + color White + } + finish { + specular 0.9 + metallic + } +} +#end + +#declare epsilon = 0.001; +#declare l = 1.5; + +#declare a = sqrt(2); +#macro G2(phi,sg) + a * sqrt(cos(2*phi)) * < sg * cos(phi), 0, sin(phi)> +#end + +#macro Lemniskate(s, farbe) +union { + #declare phi = -pi / 4; + #declare phimax = pi / 4; + #declare phisteps = 100; + #declare phistep = phimax / phisteps; + #while (phi < phimax - phistep/2) + sphere { G2(phi,1), s } + cylinder { G2(phi,1), G2(phi+phistep,1), s } + sphere { G2(phi,-1), s } + cylinder { G2(phi,-1), G2(phi+phistep,-1), s } + #declare phi = phi + phistep; + #end + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } +} +#end + +#macro Projektion(s, farbe) +union { + #declare phistep = pi / 16; + #declare phi = -pi / 4 + phistep; + #declare phimax = pi / 4; + #while (phi < phimax - phistep/2) + cylinder { G(phi, 1), G2(phi, 1), s } + cylinder { G(phi, -1), G2(phi, -1), s } + #declare phi = phi + phistep; + #end + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } +} +#end + +#macro Ebene(l, b, farbe) +mesh { + triangle { <-l, 0, -b>, < l, 0, -b>, < l, 0, b> } + triangle { <-l, 0, -b>, < l, 0, b>, <-l, 0, b> } + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } +} +#end + +#macro Ebenengitter(l, b, s, r, farbe) +union { + #declare lmax = floor(l / s); + #declare ll = -lmax; + #while (ll <= lmax) + cylinder { <ll * s, 0, -b>, <ll * s, 0, b>, r } + #declare ll = ll + 1; + #end + #declare bmax = floor(b / s); + #declare bb = -bmax; + #while (bb <= bmax) + cylinder { <-l, 0, bb * s>, <l, 0, bb * s>, r } + #declare bb = bb + 1; + #end + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } +} +#end + +#declare b = 0.5; +#macro T(phi, theta) + b * < (2 + cos(theta)) * cos(phi), (2 + cos(theta)) * sin(phi) + 1, sin(theta) > +#end + +#macro breitenkreis(theta, r) + #declare phi = 0; + #declare phimax = 2 * pi; + #declare phisteps = 200; + #declare phistep = phimax / phisteps; + #while (phi < phimax - phistep/2) + cylinder { T(phi, theta), T(phi + phistep, theta), r } + sphere { T(phi, theta), r } + #declare phi = phi + phistep; + #end +#end + +#macro laengenkreis(phi, r) + #declare theta = 0; + #declare thetamax = 2 * pi; + #declare thetasteps = 200; + #declare thetastep = thetamax / thetasteps; + #while (theta < thetamax - thetastep/2) + cylinder { T(phi, theta), T(phi, theta + thetastep), r } + sphere { T(phi, theta), r } + #declare theta = theta + thetastep; + #end +#end + +#macro Torusgitter(farbe, r) +union { + #declare phi = 0; + #declare phimax = 2 * pi; + #declare phistep = pi / 6; + #while (phi < phimax - phistep/2) + laengenkreis(phi, r) + #declare phi = phi + phistep; + #end + #declare thetamax = pi; + #declare thetastep = pi / 6; + #declare theta = thetastep; + #while (theta < thetamax - thetastep/2) + breitenkreis(theta, r) + breitenkreis(thetamax + theta, r) + #declare theta = theta + thetastep; + #end + breitenkreis(0, 1.5 * r) + breitenkreis(pi, 1.5 * r) + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } +} +#end + +#macro Torus(farbe) +mesh { + #declare phi = 0; + #declare phimax = 2 * pi; + #declare phisteps = 200; + #declare phistep = phimax/phisteps; + #while (phi < phimax - phistep/2) + #declare theta = 0; + #declare thetamax = 2 * pi; + #declare thetasteps = 200; + #declare thetastep = thetamax / thetasteps; + #while (theta < thetamax - thetastep/2) + triangle { + T(phi, theta), + T(phi + phistep, theta), + T(phi + phistep, theta + thetastep) + } + triangle { + T(phi, theta), + T(phi + phistep, theta + thetastep), + T(phi, theta + thetastep) + } + #declare theta = theta + thetastep; + #end + #declare phi = phi + phistep; + #end + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } +} +#end + +#declare torusfarbe = rgbt<0.2,0.6,0.2,0.2>; +#declare ebenenfarbe = rgbt<0.2,0.6,1.0,0.2>; + +arrow(<-2,0,0>,<2,0,0>,0.02,White) +arrow(<0,-1.1,0>,<0,2.2,0>,0.02,White) +arrow(<0,0,-1.7>,<0,0,2.4>,0.02,White) +Ticks(0.007,0.036) + +Lemniskate(0.02, Red) +Ebene(1.8, 1.6, ebenenfarbe) +Ebenengitter(1.8, 1.6, 0.5, 0.005, rgb<0.4,1,1>) +Torus(torusfarbe) +Torusgitter(Yellow, 0.005) + diff --git a/buch/chapters/110-elliptisch/images/torusschnitt.tex b/buch/chapters/110-elliptisch/images/torusschnitt.tex new file mode 100644 index 0000000..63351ad --- /dev/null +++ b/buch/chapters/110-elliptisch/images/torusschnitt.tex @@ -0,0 +1,41 @@ +% +% torusschnitt.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{6} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=11.98cm]{torusschnitt.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (4.4,-2.4) {$X$}; +\node at (3.5,0.6) {$Y$}; +\node at (0.3,3.8) {$Z$}; + +\end{tikzpicture} + +\end{document} + diff --git a/buch/chapters/110-elliptisch/jacobi.tex b/buch/chapters/110-elliptisch/jacobi.tex index f1e0987..166ea41 100644 --- a/buch/chapters/110-elliptisch/jacobi.tex +++ b/buch/chapters/110-elliptisch/jacobi.tex @@ -22,1597 +22,5 @@ dann muss man die Umkehrfunktionen der elliptischen Integrale dafür ins Auge fassen. -% -% ellpitische Funktionen als Trigonometrie -% -\subsection{Elliptische Funktionen als Trigonometrie} -\begin{figure} -\centering -\includegraphics{chapters/110-elliptisch/images/ellipse.pdf} -\caption{Kreis und Ellipse zum Vergleich und zur Herleitung der -elliptischen Funktionen von Jacobi als ``trigonometrische'' Funktionen -auf einer Ellipse. -\label{buch:elliptisch:fig:ellipse}} -\end{figure} -% based on Willliam Schwalm, Elliptic functions and elliptic integrals -% https://youtu.be/DCXItCajCyo - -% -% Geometrie einer Ellipse -% -\subsubsection{Geometrie einer Ellipse} -Eine {\em Ellipse} ist die Menge der Punkte der Ebene, für die die Summe -\index{Ellipse}% -der Entfernungen von zwei festen Punkten $F_1$ und $F_2$, -den {\em Brennpunkten}, konstant ist. -\index{Brennpunkt}% -In Abbildung~\ref{buch:elliptisch:fig:ellipse} eine Ellipse -mit Brennpunkten in $F_1=(-e,0)$ und $F_2=(e,0)$ dargestellt, -die durch die Punkte $(\pm a,0)$ und $(0,\pm b)$ auf den Achsen geht. -Der Punkt $(a,0)$ hat die Entfernungen $a+e$ und $a-e$ von den beiden -Brennpunkten, also die Entfernungssumme $a+e+a-e=2a$. -Jeder andere Punkt auf der Ellipse muss ebenfalls diese Entfernungssumme -haben, insbesondere auch der Punkt $(0,b)$. -Seine Entfernung zu jedem Brennpunkt muss aus Symmetriegründen gleich gross, -also $a$ sein. -Aus dem Satz von Pythagoras liest man daher ab, dass -\[ -b^2+e^2=a^2 -\qquad\Rightarrow\qquad -e^2 = a^2-b^2 -\] -sein muss. -Die Strecke $e$ heisst auch {\em (lineare) Exzentrizität} der Ellipse. -Das Verhältnis $\varepsilon= e/a$ heisst die {\em numerische Exzentrizität} -der Ellipse. - -% -% Die Ellipsengleichung -% -\subsubsection{Ellipsengleichung} -Der Punkt $P=(x,y)$ auf der Ellipse hat die Entfernungen -\begin{equation} -\begin{aligned} -\overline{PF_1}^2 -&= -y^2 + (x+e)^2 -\\ -\overline{PF_2}^2 -&= -y^2 + (x-e)^2 -\end{aligned} -\label{buch:elliptisch:eqn:wurzelausdruecke} -\end{equation} -von den Brennpunkten, für die -\begin{equation} -\overline{PF_1}+\overline{PF_2} -= -2a -\label{buch:elliptisch:eqn:pf1pf2a} -\end{equation} -gelten muss. -Man kann nachrechnen, dass ein Punkt $P$, der die Gleichung -\[ -\frac{x^2}{a^2} + \frac{y^2}{b^2}=1 -\] -erfüllt, auch die Eigenschaft~\eqref{buch:elliptisch:eqn:pf1pf2a} -erfüllt. -Zur Vereinfachung setzen wir $l_1=\overline{PF_1}$ und $l_2=\overline{PF_2}$. -$l_1$ und $l_2$ sind Wurzeln aus der rechten Seite von -\eqref{buch:elliptisch:eqn:wurzelausdruecke}. -Das Quadrat von $l_1+l_2$ ist -\[ -l_1^2 + 2l_1l_2 + l_2^2 = 4a^2. -\] -Um die Wurzeln ganz zu eliminieren, bringt man das Produkt $l_1l_2$ alleine -auf die rechte Seite und quadriert. -Man muss also verifizieren, dass -\[ -(l_1^2 + l_2^2 -4a^2)^2 = 4l_1^2l_2^2. -\] -In den entstehenden Ausdrücken muss man ausserdem $e=\sqrt{a^2-b^2}$ und -\[ -y=b\sqrt{1-\frac{x^2}{a^2}} -\] -substituieren. -Diese Rechnung führt man am einfachsten mit Hilfe eines -Computeralgebraprogramms durch, welches obige Behauptung bestätigt. - -% -% Normierung -% -\subsubsection{Normierung} -Die trigonometrischen Funktionen sind definiert als Verhältnisse -von Seiten rechtwinkliger Dreiecke. -Dadurch, dass man den die Hypothenuse auf Länge $1$ normiert, -kann man die Sinus- und Kosinus-Funktion als Koordinaten eines -Punktes auf dem Einheitskreis interpretieren. - -Für die Koordinaten eines Punktes auf der Ellipse ist dies nicht so einfach, -weil es nicht nur eine Ellipse gibt, sondern für jede numerische Exzentrizität -mindestens eine mit Halbeachse $1$. -Wir wählen die Ellipsen so, dass $a$ die grosse Halbachse ist, also $a>b$. -Als Normierungsbedingung verwenden wir, dass $b=1$ sein soll, wie in -Abbildung~\ref{buch:elliptisch:fig:jacobidef}. -Dann ist $a=1/\varepsilon>1$. -In dieser Normierung haben Punkte $(x,y)$ auf der Ellipse $y$-Koordinaten -zwischen $-1$ und $1$ und $x$-Koordinaten zwischen $-a$ und $a$. - -Im Zusammenhang mit elliptischen Funktionen wird die numerische Exzentrizität -$\varepsilon$ auch mit -\[ -k -= -\varepsilon -= -\frac{e}{a} -= -\frac{\sqrt{a^2-b^2}}{a} -= -\frac{\sqrt{a^2-1}}{a}, -\] -die Zahl $k$ heisst auch der {\em Modulus}. -Man kann $a$ auch durch $k$ ausdrücken, durch Quadrieren und Umstellen -findet man -\[ -k^2a^2 = a^2-1 -\quad\Rightarrow\quad -1=a^2(k^2-1) -\quad\Rightarrow\quad -a=\frac{1}{\sqrt{k^2-1}}. -\] - -Die Gleichung der ``Einheitsellipse'' zu diesem Modulus ist -\[ -\frac{x^2}{a^2}+y^2=1 -\qquad\text{oder}\qquad -x^2(k^2-1) + y^2 = 1. -\] - -% -% Definition der elliptischen Funktionen -% -\begin{figure} -\centering -\includegraphics{chapters/110-elliptisch/images/jacobidef.pdf} -\caption{Definition der elliptischen Funktionen als Trigonometrie -an einer Ellipse mit Halbachsen $a$ und $1$. -\label{buch:elliptisch:fig:jacobidef}} -\end{figure} -\subsubsection{Definition der elliptischen Funktionen} -Die elliptischen Funktionen für einen Punkt $P$ auf der Ellipse mit Modulus $k$ -können jetzt als Verhältnisse der Koordinaten des Punktes definieren. -Es stellt sich aber die Frage, was man als Argument verwenden soll. -Es soll so etwas wie den Winkel $\varphi$ zwischen der $x$-Achse und dem -Radiusvektor zum Punkt $P$ -darstellen, aber wir haben hier noch eine Wahlfreiheit, die wir später -ausnützen möchten. -Im Moment müssen wir die Frage noch nicht beantworten und nennen das -noch unbestimmte Argument $u$. -Wir kümmern uns später um die Frage, wie $u$ von $\varphi$ abhängt. - -Die Funktionen, die wir definieren wollen, hängen ausserdem auch -vom Modulus ab. -Falls der verwendete Modulus aus dem Zusammenhang klar ist, lassen -wir das $k$-Argument weg. - -Die Punkte auf dem Einheitskreis haben alle den gleichen Abstand vom -Nullpunkt, dies ist gleichzeitig die definierende Gleichung $r^2=x^2+y^2=1$ -des Kreises. -Die Punkte auf der Ellipse erfüllen die Gleichung $x^2/a^2+y^2=1$, -die Entfernung der Punkte $r=\sqrt{x^2+y^2}$ vom Nullpunkt variert aber. - -In Analogie zu den trigonometrischen Funktionen setzen wir jetzt für -die Funktionen -\[ -\begin{aligned} -&\text{sinus amplitudinis:}& -{\color{red}\operatorname{sn}(u,k)}&= y \\ -&\text{cosinus amplitudinis:}& -{\color{blue}\operatorname{cn}(u,k)}&= \frac{x}{a} \\ -&\text{delta amplitudinis:}& -{\color{darkgreen}\operatorname{dn}(u,k)}&=\frac{r}{a}, -\end{aligned} -\] -die auch in Abbildung~\ref{buch:elliptisch:fig:jacobidef} -dargestellt sind. -Aus der Gleichung der Ellipse folgt sofort, dass -\[ -\operatorname{sn}(u,k)^2 + \operatorname{cn}(u,k)^2 = 1 -\] -ist. -Der Satz von Pythagoras kann verwendet werden, um die Entfernung zu -berechnen, also gilt -\begin{equation} -r^2 -= -a^2 \operatorname{dn}(u,k)^2 -= -x^2 + y^2 -= -a^2\operatorname{cn}(u,k)^2 + \operatorname{sn}(u,k)^2 -\quad -\Rightarrow -\quad -a^2 \operatorname{dn}(u,k)^2 -= -a^2\operatorname{cn}(u,k)^2 + \operatorname{sn}(u,k)^2. -\label{buch:elliptisch:eqn:sncndnrelation} -\end{equation} -Ersetzt man -$ -a^2\operatorname{cn}(u,k)^2 -= -a^2-a^2\operatorname{sn}(u,k)^2 -$, ergibt sich -\[ -a^2 \operatorname{dn}(u,k)^2 -= -a^2-a^2\operatorname{sn}(u,k)^2 -+ -\operatorname{sn}(u,k)^2 -\quad -\Rightarrow -\quad -\operatorname{dn}(u,k)^2 -+ -\frac{a^2-1}{a^2}\operatorname{sn}(u,k)^2 -= -1, -\] -woraus sich die Identität -\[ -\operatorname{dn}(u,k)^2 + k^2 \operatorname{sn}(u,k)^2 = 1 -\] -ergibt. -Ebenso kann man aus~\eqref{buch:elliptisch:eqn:sncndnrelation} -die Funktion $\operatorname{cn}(u,k)$ eliminieren, was auf -\[ -a^2\operatorname{dn}(u,k)^2 -= -a^2\operatorname{cn}(u,k)^2 -+1-\operatorname{cn}(u,k)^2 -= -(a^2-1)\operatorname{cn}(u,k)^2 -+1. -\] -Nach Division durch $a^2$ ergibt sich -\begin{align*} -\operatorname{dn}(u,k)^2 -- -k^2\operatorname{cn}(u,k)^2 -&= -\frac{1}{a^2} -= -\frac{a^2-a^2+1}{a^2} -= -1-k^2 =: k^{\prime 2}. -\end{align*} -Wir stellen die hiermit gefundenen Relationen zwischen den grundlegenden -Jacobischen elliptischen Funktionen für später zusammen in den Formeln -\begin{equation} -\begin{aligned} -\operatorname{sn}^2(u,k) -+ -\operatorname{cn}^2(u,k) -&= -1 -\\ -\operatorname{dn}^2(u,k) + k^2\operatorname{sn}^2(u,k) -&= -1 -\\ -\operatorname{dn}^2(u,k) -k^2\operatorname{cn}^2(u,k) -&= -k^{\prime 2}. -\end{aligned} -\label{buch:elliptisch:eqn:jacobi-relationen} -\end{equation} -zusammen. -So wie es möglich ist, $\sin\alpha$ durch $\cos\alpha$ auszudrücken, -ist es mit -\eqref{buch:elliptisch:eqn:jacobi-relationen} -jetzt auch möglich jede grundlegende elliptische Funktion durch -jede anderen auszudrücken. -Die Resultate sind in der Tabelle~\ref{buch:elliptisch:fig:jacobi-relationen} -zusammengestellt. - -\begin{table} -\centering -\renewcommand{\arraystretch}{2.1} -\begin{tabular}{|>{$\displaystyle}c<{$}|>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}|} -\hline -&\operatorname{sn}(u,k) -&\operatorname{cn}(u,k) -&\operatorname{dn}(u,k)\\ -\hline -\operatorname{sn}(u,k) -&\operatorname{sn}(u,k) -&\sqrt{1-\operatorname{cn}^2(u,k)} -&\frac1k\sqrt{1-\operatorname{dn}^2(u,k)} -\\ -\operatorname{cn}(u,k) -&\sqrt{1-\operatorname{sn}^2(u,k)} -&\operatorname{cn}(u,k) -&\frac{1}{k}\sqrt{\operatorname{dn}^2(u,k)-k^{\prime2}} -\\ -\operatorname{dn}(u,k) -&\sqrt{1-k^2\operatorname{sn}^2(u,k)} -&\sqrt{k^{\prime2}+k^2\operatorname{cn}^2(u,k)} -&\operatorname{dn}(u,k) -\\ -\hline -\end{tabular} -\caption{Jede der Jacobischen elliptischen Funktionen lässt sich -unter Verwendung der Relationen~\eqref{buch:elliptisch:eqn:jacobi-relationen} -durch jede andere ausdrücken. -\label{buch:elliptisch:fig:jacobi-relationen}} -\end{table} - -% -% Ableitungen der Jacobi-ellpitischen Funktionen -% -\subsubsection{Ableitung} -Die trigonometrischen Funktionen sind deshalb so besonders nützlich -für die Lösung von Schwingungsdifferentialgleichungen, weil sie die -Beziehungen -\[ -\frac{d}{d\varphi} \cos\varphi = -\sin\varphi -\qquad\text{und}\qquad -\frac{d}{d\varphi} \sin\varphi = \cos\varphi -\] -erfüllen. -So einfach können die Beziehungen natürlich nicht sein, sonst würde sich -durch Integration ja wieder nur die trigonometrischen Funktionen ergeben. -Durch geschickte Wahl des Arguments $u$ kann man aber erreichen, dass -sie ähnlich nützliche Beziehungen zwischen den Ableitungen ergeben. - -Gesucht ist jetzt also eine Wahl für das Argument $u$ zum Beispiel in -Abhängigkeit von $\varphi$, dass sich einfache und nützliche -Ableitungsformeln ergeben. -Wir setzen daher $u(\varphi)$ voraus und beachten, dass $x$ und $y$ -ebenfalls von $\varphi$ abhängen, es ist -$y=\sin\varphi$ und $x=a\cos\varphi$. -Die Ableitungen von $x$ und $y$ nach $\varphi$ sind -\begin{align*} -\frac{dy}{d\varphi} -&= -\cos\varphi -= -\frac{1}{a} x -= -\operatorname{cn}(u,k) -\\ -\frac{dx}{d\varphi} -&= --a\sin\varphi -= --a y -= --a\operatorname{sn}(u,k). -\end{align*} -Daraus kann man jetzt die folgenden Ausdrücke für die Ableitungen der -elliptischen Funktionen nach $\varphi$ ableiten: -\begin{align*} -\frac{d}{d\varphi} \operatorname{sn}(u,z) -&= -\frac{d}{d\varphi} y(\varphi) -= -\cos\varphi -= -\frac{x}{a} -= -\operatorname{cn}(u,k) -&&\Rightarrow& -\frac{d}{du} -\operatorname{sn}(u,k) -&= -\operatorname{cn}(u,k) \frac{d\varphi}{du} -\\ -\frac{d}{d\varphi} \operatorname{cn}(u,z) -&= -\frac{d}{d\varphi} \frac{x(\varphi)}{a} -= --\sin\varphi -= --\operatorname{sn}(u,k) -&&\Rightarrow& -\frac{d}{du}\operatorname{cn}(u,k) -&= --\operatorname{sn}(u,k) \frac{d\varphi}{du} -\\ -\frac{d}{d\varphi} \operatorname{dn}(u,z) -&= -\frac{1}{a}\frac{dr}{d\varphi} -= -\frac{1}{a}\frac{d\sqrt{x^2+y^2}}{d\varphi} -\\ -&= -\frac{x}{ar} \frac{dx}{d\varphi} -+ -\frac{y}{ar} \frac{dy}{d\varphi} -\\ -&= -\frac{x}{ar} (-a\operatorname{sn}(u,k)) -+ -\frac{y}{ar} \operatorname{cn}(u,k) -\\ -&= -\frac{x}{ar}(-ay) -+ -\frac{y}{ar} \frac{x}{a} -= -\frac{xy(-1+\frac{1}{a^2})}{r} -\\ -&= --\frac{xy(a^2-1)}{a^2r} -\\ -&= --\frac{a^2-1}{ar} -\operatorname{cn}(u,k) \operatorname{sn}(u,k) -\\ -&=-k^2 -\frac{a}{r} -\operatorname{cn}(u,k) \operatorname{sn}(u,k) -\\ -&= --k^2\frac{\operatorname{cn}(u,k)\operatorname{sn}(u,k)}{\operatorname{dn}(u,k)} -&&\Rightarrow& -\frac{d}{du} \operatorname{dn}(u,k) -&= --k^2\frac{\operatorname{cn}(u,k) -\operatorname{sn}(u,k)}{\operatorname{dn}(u,k)} -\frac{d\varphi}{du} -\end{align*} -Die einfachsten Beziehungen ergeben sich offenbar, wenn man $u$ so -wählt, dass -\[ -\frac{d\varphi}{du} -= -\operatorname{dn}(u,k) -= -\frac{r}{a} -\] -Damit haben wir die grundlegenden Ableitungsregeln -\begin{align*} -\frac{d}{du}\operatorname{sn}(u,k) -&= -\phantom{-}\operatorname{cn}(u,k)\operatorname{dn}(u,k) -\\ -\frac{d}{du}\operatorname{cn}(u,k) -&= --\operatorname{sn}(u,k)\operatorname{dn}(u,k) -\\ -\frac{d}{du}\operatorname{dn}(u,k) -&= --k^2\operatorname{sn}(u,k)\operatorname{cn}(u,k) -\end{align*} -der elliptischen Funktionen nach Jacobi. - -% -% Der Grenzfall $k=1$ -% -\subsubsection{Der Grenzwert $k\to1$} -\begin{figure} -\centering -\includegraphics{chapters/110-elliptisch/images/sncnlimit.pdf} -\caption{Grenzfälle der Jacobischen elliptischen Funktionen -für die Werte $0$ und $1$ des Parameters $k$. -\label{buch:elliptisch:fig:sncnlimit}} -\end{figure} -Für $k=1$ ist $k^{\prime2}=1-k^2=$ und es folgt aus den -Relationen~\eqref{buch:elliptisch:eqn:jacobi-relationen} -\[ -\operatorname{cn}^2(u,k) -- -k^2 -\operatorname{dn}^2(u,k) -= -k^{\prime2} -= -0 -\qquad\Rightarrow\qquad -\operatorname{cn}^2(u,1) -= -\operatorname{dn}^2(u,1), -\] -die beiden Funktionen -$\operatorname{cn}(u,k)$ -und -$\operatorname{dn}(u,k)$ -fallen also zusammen. -Die Ableitungsregeln werden dadurch vereinfacht: -\begin{align*} -\operatorname{sn}'(u,1) -&= -\operatorname{cn}(u,1) -\operatorname{dn}(u,1) -= -\operatorname{cn}^2(u,1) -= -1-\operatorname{sn}^2(u,1) -&&\Rightarrow& y'&=1-y^2 -\\ -\operatorname{cn}'(u,1) -&= -- -\operatorname{sn}(u,1) -\operatorname{dn}(u,1) -= -- -\operatorname{sn}(u,1)\operatorname{cn}(u,1) -&&\Rightarrow& -\frac{z'}{z}&=(\log z)' = -y -\end{align*} -Die erste Differentialgleichung für $y$ lässt sich separieren, man findet -die Lösung -\[ -\frac{y'}{1-y^2} -= -1 -\quad\Rightarrow\quad -\int \frac{dy}{1-y^2} = \int \,du -\quad\Rightarrow\quad -\operatorname{artanh}(y) = u -\quad\Rightarrow\quad -\operatorname{sn}(u,1)=\tanh u. -\] -Damit kann man jetzt auch $z$ berechnen: -\begin{align*} -(\log \operatorname{cn}(u,1))' -&= -\tanh u -&&\Rightarrow& -\log\operatorname{cn}(u,1) -&= --\int\tanh u\,du -= --\log\cosh u -\\ -& -&&\Rightarrow& -\operatorname{cn}(u,1) -&= -\frac{1}{\cosh u} -= -\operatorname{sech}u. -\end{align*} -Die Grenzfunktionen sind in Abbildung~\ref{buch:elliptisch:fig:sncnlimit} -dargestellt. - -% -% Das Argument u -% -\subsubsection{Das Argument $u$} -Die Gleichung -\begin{equation} -\frac{d\varphi}{du} -= -\operatorname{dn}(u,k) -\label{buch:elliptisch:eqn:uableitung} -\end{equation} -ermöglicht, $\varphi$ in Abhängigkeit von $u$ zu berechnen, ohne jedoch -die geometrische Bedeutung zu klären. -Das beginnt bereits damit, dass der Winkel $\varphi$ nicht nicht der -Polarwinkel des Punktes $P$ in Abbildung~\ref{buch:elliptisch:fig:jacobidef} -ist, diesen nennen wir $\vartheta$. -Der Zusammenhang zwischen $\varphi$ und $\vartheta$ ist -\begin{equation} -\frac1{a}\tan\varphi = \tan\vartheta -\label{buch:elliptisch:eqn:phitheta} -\end{equation} - -Um die geometrische Bedeutung besser zu verstehen, nehmen wir jetzt an, -dass die Ellipse mit einem Parameter $t$ parametrisiert ist, dass also -$\varphi(t)$, $\vartheta(t)$ und $u(t)$ Funktionen von $t$ sind. -Die Ableitung von~\eqref{buch:elliptisch:eqn:phitheta} ist -\[ -\frac1{a}\cdot \frac{1}{\cos^2\varphi}\cdot \dot{\varphi} -= -\frac{1}{\cos^2\vartheta}\cdot \dot{\vartheta}. -\] -Daraus kann die Ableitung von $\vartheta$ nach $\varphi$ bestimmt -werden, sie ist -\[ -\frac{d\vartheta}{d\varphi} -= -\frac{\dot{\vartheta}}{\dot{\varphi}} -= -\frac{1}{a} -\cdot -\frac{\cos^2\vartheta}{\cos^2\varphi} -= -\frac{1}{a} -\cdot -\frac{(x/r)^2}{(x/a)^2} -= -\frac{1}{a}\cdot -\frac{a^2}{r^2} -= -\frac{1}{a}\cdot\frac{1}{\operatorname{dn}^2(u,k)}. -\] -Damit kann man jetzt mit Hilfe von~\eqref{buch:elliptisch:eqn:uableitung} -Die Ableitung von $\vartheta$ nach $u$ ermitteln, sie ist -\[ -\frac{d\vartheta}{du} -= -\frac{d\vartheta}{d\varphi} -\cdot -\frac{d\varphi}{du} -= -\frac{1}{a}\cdot\frac{1}{\operatorname{dn}^2(u,k)} -\cdot -\operatorname{dn}(u,k) -= -\frac{1}{a} -\cdot -\frac{1}{\operatorname{dn}(u,k)} -= -\frac{1}{a} -\cdot\frac{a}{r} -= -\frac{1}{r}, -\] -wobei wir auch die Definition der Funktion $\operatorname{dn}(u,k)$ -verwendet haben. - -In der Parametrisierung mit dem Parameter $t$ kann man jetzt die Ableitung -von $u$ nach $t$ berechnen als -\[ -\frac{du}{dt} -= -\frac{du}{d\vartheta} -\frac{d\vartheta}{dt} -= -r -\dot{\vartheta}. -\] -Darin ist $\dot{\vartheta}$ die Winkelgeschwindigkeit des Punktes um -das Zentrum $O$ und $r$ ist die aktuelle Entfernung des Punktes $P$ -von $O$. -$r\dot{\vartheta}$ ist also die Geschwindigkeitskomponenten des Punktes -$P$ senkrecht auf den aktuellen Radiusvektor. -Der Parameter $u$, der zum Punkt $P$ gehört, ist also das Integral -\[ -u(P) = \int_0^P r\,d\vartheta. -\] -Für einen Kreis ist die Geschwindigkeit von $P$ immer senkrecht -auf dem Radiusvektor und der Radius ist konstant, so dass -$u(P)=\vartheta(P)$ ist. - -% -% Die abgeleiteten elliptischen Funktionen -% -\begin{figure} -\centering -\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/jacobi12.pdf} -\caption{Die Verhältnisse der Funktionen -$\operatorname{sn}(u,k)$, -$\operatorname{cn}(u,k)$ -udn -$\operatorname{dn}(u,k)$ -geben Anlass zu neun weitere Funktionen, die sich mit Hilfe -des Strahlensatzes geometrisch interpretieren lassen. -\label{buch:elliptisch:fig:jacobi12}} -\end{figure} -\begin{table} -\centering -\renewcommand{\arraystretch}{2.5} -\begin{tabular}{|>{$\displaystyle}c<{$}|>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}|} -\hline -\cdot & -\frac{1}{1} & -\frac{1}{\operatorname{sn}(u,k)} & -\frac{1}{\operatorname{cn}(u,k)} & -\frac{1}{\operatorname{dn}(u,k)} -\\[5pt] -\hline -1& -&%\operatorname{nn}(u,k)=\frac{1}{1} & -\operatorname{ns}(u,k)=\frac{1}{\operatorname{sn}(u,k)} & -\operatorname{nc}(u,k)=\frac{1}{\operatorname{cn}(u,k)} & -\operatorname{nd}(u,k)=\frac{1}{\operatorname{dn}(u,k)} -\\ -\operatorname{sn}(u,k) & -\operatorname{sn}(u,k)=\frac{\operatorname{sn}(u,k)}{1}& -&%\operatorname{ss}(u,k)=\frac{\operatorname{sn}(u,k)}{\operatorname{sn}(u,k)}& -\operatorname{sc}(u,k)=\frac{\operatorname{sn}(u,k)}{\operatorname{cn}(u,k)}& -\operatorname{sd}(u,k)=\frac{\operatorname{sn}(u,k)}{\operatorname{dn}(u,k)} -\\ -\operatorname{cn}(u,k) & -\operatorname{cn}(u,k)=\frac{\operatorname{cn}(u,k)}{1} & -\operatorname{cs}(u,k)=\frac{\operatorname{cn}(u,k)}{\operatorname{sn}(u,k)}& -&%\operatorname{cc}(u,k)=\frac{\operatorname{cn}(u,k)}{\operatorname{cn}(u,k)}& -\operatorname{cd}(u,k)=\frac{\operatorname{cn}(u,k)}{\operatorname{dn}(u,k)} -\\ -\operatorname{dn}(u,k) & -\operatorname{dn}(u,k)=\frac{\operatorname{dn}(u,k)}{1} & -\operatorname{ds}(u,k)=\frac{\operatorname{dn}(u,k)}{\operatorname{sn}(u,k)}& -\operatorname{dc}(u,k)=\frac{\operatorname{dn}(u,k)}{\operatorname{cn}(u,k)}& -%\operatorname{dd}(u,k)=\frac{\operatorname{dn}(u,k)}{\operatorname{dn}(u,k)} -\\[5pt] -\hline -\end{tabular} -\caption{Zusammenstellung der abgeleiteten Jacobischen elliptischen -Funktionen in hinteren drei Spalten als Quotienten der grundlegenden -Jacobischen elliptischen Funktionen. -Die erste Spalte zum Nenner $1$ enthält die grundlegenden -Jacobischen elliptischen Funktionen. -\label{buch:elliptisch:table:abgeleitetjacobi}} -\end{table} -\subsubsection{Die abgeleiteten elliptischen Funktionen} -Zusätzlich zu den grundlegenden Jacobischen elliptischen Funktioenn -lassen sich weitere elliptische Funktionen bilden, die unglücklicherweise -die {\em abgeleiteten elliptischen Funktionen} genannt werden. -Ähnlich wie die trigonometrischen Funktionen $\tan\alpha$, $\cot\alpha$, -$\sec\alpha$ und $\csc\alpha$ als Quotienten von $\sin\alpha$ und -$\cos\alpha$ definiert sind, sind die abgeleiteten elliptischen Funktionen -die in Tabelle~\ref{buch:elliptisch:table:abgeleitetjacobi} zusammengestellten -Quotienten der grundlegenden Jacobischen elliptischen Funktionen. -Die Bezeichnungskonvention ist, dass die Funktion $\operatorname{pq}(u,k)$ -ein Quotient ist, dessen Zähler durch den Buchstaben p bestimmt ist, -der Nenner durch den Buchstaben q. -Der Buchstabe n steht für eine $1$, die Buchstaben s, c und d stehen für -die Anfangsbuchstaben der grundlegenden Jacobischen elliptischen -Funktionen. -Meint man irgend eine der Jacobischen elliptischen Funktionen, schreibt -man manchmal auch $\operatorname{zn}(u,k)$. - -In Abbildung~\ref{buch:elliptisch:fig:jacobi12} sind die Quotienten auch -geometrisch interpretiert. -Der Wert der Funktion $\operatorname{nq}(u,k)$ ist die auf dem Strahl -mit Polarwinkel $\varphi$ abgetragene Länge bis zu den vertikalen -Geraden, die den verschiedenen möglichen Nennern entsprechen. -Entsprechend ist der Wert der Funktion $\operatorname{dq}(u,k)$ die -Länge auf dem Strahl mit Polarwinkel $\vartheta$. - -Die Relationen~\ref{buch:elliptisch:eqn:jacobi-relationen} -ermöglichen, jede Funktion $\operatorname{zn}(u,k)$ durch jede -andere auszudrücken. -Die schiere Anzahl solcher Beziehungen macht es unmöglich, sie -übersichtlich in einer Tabelle zusammenzustellen, daher soll hier -nur an einem Beispiel das Vorgehen gezeigt werden: - -\begin{beispiel} -Die Funktion $\operatorname{sc}(u,k)$ soll durch $\operatorname{cd}(u,k)$ -ausgedrückt werden. -Zunächst ist -\[ -\operatorname{sc}(u,k) -= -\frac{\operatorname{sn}(u,k)}{\operatorname{cn}(u,k)} -\] -nach Definition. -Im Resultat sollen nur noch $\operatorname{cn}(u,k)$ und -$\operatorname{dn}(u,k)$ vorkommen. -Daher eliminieren wir zunächst die Funktion $\operatorname{sn}(u,k)$ -mit Hilfe von \eqref{buch:elliptisch:eqn:jacobi-relationen} und erhalten -\begin{equation} -\operatorname{sc}(u,k) -= -\frac{\sqrt{1-\operatorname{cn}^2(u,k)}}{\operatorname{cn}(u,k)}. -\label{buch:elliptisch:eqn:allgausdruecken} -\end{equation} -Nun genügt es, die Funktion $\operatorname{cn}(u,k)$ durch -$\operatorname{cd}(u,k)$ auszudrücken. -Aus der Definition und der -dritten Relation in \eqref{buch:elliptisch:eqn:jacobi-relationen} -erhält man -\begin{align*} -\operatorname{cd}^2(u,k) -&= -\frac{\operatorname{cn}^2(u,k)}{\operatorname{dn}^2(u,k)} -= -\frac{\operatorname{cn}^2(u,k)}{k^{\prime2}+k^2\operatorname{cn}^2(u,k)} -\\ -\Rightarrow -\qquad -k^{\prime 2} -\operatorname{cd}^2(u,k) -+ -k^2\operatorname{cd}^2(u,k)\operatorname{cn}^2(u,k) -&= -\operatorname{cn}^2(u,k) -\\ -\operatorname{cn}^2(u,k) -- -k^2\operatorname{cd}^2(u,k)\operatorname{cn}^2(u,k) -&= -k^{\prime 2} -\operatorname{cd}^2(u,k) -\\ -\operatorname{cn}^2(u,k) -&= -\frac{ -k^{\prime 2} -\operatorname{cd}^2(u,k) -}{ -1 - k^2\operatorname{cd}^2(u,k) -} -\end{align*} -Für den Zähler brauchen wir $1-\operatorname{cn}^2(u,k)$, also -\[ -1-\operatorname{cn}^2(u,k) -= -\frac{ -1 -- -k^2\operatorname{cd}^2(u,k) -- -k^{\prime 2} -\operatorname{cd}^2(u,k) -}{ -1 -- -k^2\operatorname{cd}^2(u,k) -} -= -\frac{1-\operatorname{cd}^2(u,k)}{1-k^2\operatorname{cd}^2(u,k)} -\] -Einsetzen in~\eqref{buch:elliptisch:eqn:allgausdruecken} gibt -\begin{align*} -\operatorname{sc}(u,k) -&= -\frac{ -\sqrt{1-\operatorname{cd}^2(u,k)} -}{\sqrt{1-k^2\operatorname{cd}^2(u,k)}} -\cdot -\frac{ -\sqrt{1 - k^2\operatorname{cd}^2(u,k)} -}{ -k' -\operatorname{cd}(u,k) -} -= -\frac{ -\sqrt{1-\operatorname{cd}^2(u,k)} -}{ -k' -\operatorname{cd}(u,k) -}. -\qedhere -\end{align*} -\end{beispiel} - -\subsubsection{Ableitung der abgeleiteten elliptischen Funktionen} -Aus den Ableitungen der grundlegenden Jacobischen elliptischen Funktionen -können mit der Quotientenregel nun auch beliebige Ableitungen der -abgeleiteten Jacobischen elliptischen Funktionen gefunden werden. -Als Beispiel berechnen wir die Ableitung von $\operatorname{sc}(u,k)$. -Sie ist -\begin{align*} -\frac{d}{du} -\operatorname{sc}(u,k) -&= -\frac{d}{du} -\frac{\operatorname{sn}(u,k)}{\operatorname{cn}(u,k)} -= -\frac{ -\operatorname{sn}'(u,k)\operatorname{cn}(u,k) -- -\operatorname{sn}(u,k)\operatorname{cn}'(u,k)}{ -\operatorname{cn}^2(u,k) -} -\\ -&= -\frac{ -\operatorname{cn}^2(u,k)\operatorname{dn}(u,k) -+ -\operatorname{sn}^2(u,k)\operatorname{dn}(u,k) -}{ -\operatorname{cn}^2(u,k) -} -= -\frac{( -\operatorname{sn}^2(u,k) -+ -\operatorname{cn}^2(u,k) -)\operatorname{dn}(u,k)}{ -\operatorname{cn}^2(u,k) -} -\\ -&= -\frac{1}{\operatorname{cn}(u,k)} -\cdot -\frac{\operatorname{dn}(u,k)}{\operatorname{cn}(u,k)} -= -\operatorname{nc}(u,k) -\operatorname{dc}(u,k). -\end{align*} -Man beachte, dass das Quadrat der Nennerfunktion im Resultat -der Quotientenregel zur Folge hat, dass die -beiden Funktionen im Resultat beide den gleichen Nenner haben wie -die Funktion, die abgeleitet wird. - -Mit etwas Fleiss kann man nach diesem Muster alle Ableitungen -\begin{equation} -%\small -\begin{aligned} -\operatorname{sn}'(u,k) -&= -\phantom{-} -\operatorname{cn}(u,k)\,\operatorname{dn}(u,k) -&&\qquad& -\operatorname{ns}'(u,k) -&= -- -\operatorname{cs}(u,k)\,\operatorname{ds}(u,k) -\\ -\operatorname{cn}'(u,k) -&= -- -\operatorname{sn}(u,k)\,\operatorname{dn}(u,k) -&&& -\operatorname{nc}'(u,k) -&= -\phantom{-} -\operatorname{sc}(u,k)\,\operatorname{dc}(u,k) -\\ -\operatorname{dn}'(u,k) -&= --k^2 -\operatorname{sn}(u,k)\,\operatorname{cn}(u,k) -&&& -\operatorname{nd}'(u,k) -&= -\phantom{-} -k^2 -\operatorname{sd}(u,k)\,\operatorname{cd}(u,k) -\\ -\operatorname{sc}'(u,k) -&= -\phantom{-} -\operatorname{dc}(u,k)\,\operatorname{nc}(u,k) -&&& -\operatorname{cs}'(u,k) -&= -- -\operatorname{ds}(u,k)\,\operatorname{ns}(u,k) -\\ -\operatorname{cd}'(u,k) -&= --k^{\prime2} -\operatorname{sd}(u,k)\,\operatorname{nd}(u,k) -&&& -\operatorname{dc}'(u,k) -&= -\phantom{-} -k^{\prime2} -\operatorname{dc}(u,k)\,\operatorname{nc}(u,k) -\\ -\operatorname{ds}'(d,k) -&= -- -\operatorname{cs}(u,k)\,\operatorname{ns}(u,k) -&&& -\operatorname{sd}'(d,k) -&= -\phantom{-} -\operatorname{cd}(u,k)\,\operatorname{nd}(u,k) -\end{aligned} -\label{buch:elliptisch:eqn:alleableitungen} -\end{equation} -finden. -Man beachte, dass in jeder Identität alle Funktionen den gleichen -zweiten Buchstaben haben. - -\subsubsection{TODO} -XXX algebraische Beziehungen \\ -XXX Additionstheoreme \\ -XXX Perioden -% use https://math.stackexchange.com/questions/3013692/how-to-show-that-jacobi-sine-function-is-doubly-periodic - - -XXX Ableitungen \\ -XXX Werte \\ - -% -% Lösung von Differentialgleichungen -% -\subsection{Lösungen von Differentialgleichungen} -Die elliptischen Funktionen ermöglichen die Lösung gewisser nichtlinearer -Differentialgleichungen in geschlossener Form. -Ziel dieses Abschnitts ist, Differentialgleichungen der Form -\( -\ddot{x}(t) -= -p(x(t)) -\) -mit einem Polynom dritten Grades als rechter Seite lösen zu können. - -% -% Die Differentialgleichung der elliptischen Funktionen -% -\subsubsection{Die Differentialgleichungen der elliptischen Funktionen} -Um Differentialgleichungen mit elliptischen Funktion lösen zu -können, muss man als erstes die Differentialgleichungen derselben -finden. -Quadriert man die Ableitungsregel für $\operatorname{sn}(u,k)$, erhält -man -\[ -\biggl(\frac{d}{du}\operatorname{sn}(u,k)\biggr)^2 -= -\operatorname{cn}(u,k)^2 \operatorname{dn}(u,k)^2. -\] -Die Funktionen auf der rechten Seite können durch $\operatorname{sn}(u,k)$ -ausgedrückt werden. -\begin{align*} -\biggl(\frac{d}{du}\operatorname{sn}(u,k)\biggr)^2 -&= -\biggl( -1-\operatorname{sn}(u,k)^2 -\biggr) -\biggl( -1-k^2 \operatorname{sn}(u,k)^2 -\biggr) -\\ -&= -k^2\operatorname{sn}(u,k)^4 --(1+k^2) -\operatorname{sn}(u,k)^2 -+1. -\end{align*} -Für die Funktion $\operatorname{cn}(u,k)$ ergibt analoge Rechnung -\begin{align*} -\frac{d}{du}\operatorname{cn}(u,k) -&= --\operatorname{sn}(u,k) \operatorname{dn}(u,k) -\\ -\biggl(\frac{d}{du}\operatorname{cn}(u,k)\biggr)^2 -&= -\operatorname{sn}(u,k)^2 \operatorname{dn}(u,k)^2 -\\ -&= -\biggl(1-\operatorname{cn}(u,k)^2\biggr) -\biggl(1-k^2+k^2 \operatorname{cn}(u,k)^2\biggr) -\\ -&= --k^2\operatorname{cn}(u,k)^4 -- -(1-k^2-k^2)\operatorname{cn}(u,k)^2 -+ -(1-k^2) -\\ -\frac{d}{du}\operatorname{dn}(u,k) -&= --k^2\operatorname{sn}(u,k)\operatorname{cn}(u,k) -\\ -\biggl( -\frac{d}{du}\operatorname{dn}(u,k) -\biggr)^2 -&= -\bigl(k^2 \operatorname{sn}(u,k)^2\bigr) -\bigl(k^2 \operatorname{cn}(u,k)^2\bigr) -\\ -&= -\biggl( -1-\operatorname{dn}(u,k)^2 -\biggr) -\biggl( -\operatorname{dn}(u,k)^2-k^2+1 -\biggr) -\\ -&= --\operatorname{dn}(u,k)^4 -- -2\operatorname{dn}(u,k)^2 --k^2+1. -\end{align*} -\begin{table} -\centering -\renewcommand{\arraystretch}{2} -\begin{tabular}{|>{$}l<{$}|>{$}l<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}>{$}c<{$}>{$}c<{$}|} -\hline -\text{Funktion $y=$}&\text{Differentialgleichung}&\alpha&\beta&\gamma&\multicolumn{3}{c|}{Signatur}\\ -\hline -\operatorname{sn}(u,k) - & y'^2 = \phantom{-}(1-y^2)(1-k^2y^2) - &k^2&1&1 &+&+&+ -\\ -\operatorname{cn}(u,k) - &y'^2 = \phantom{-}(1-y^2)(1-k^2+k^2y^2) - &-k^2 &2k^2-1&1-k^2 &-&&+ -\\ -\operatorname{dn}(u,k) - & y'^2 = -(1-y^2)(1-k^2-y^2) - &1 &1-k^2 &-(1-k^2)&+&+&- -\\ -\hline -\end{tabular} -\caption{Elliptische Funktionen als Lösungsfunktionen für verschiedene -nichtlineare Differentialgleichungen der Art -\eqref{buch:elliptisch:eqn:1storderdglell}. -Die Vorzeichen der Koeffizienten $\alpha$, $\beta$ und $\gamma$ -entscheidet darüber, welche Funktion für die Lösung verwendet werden -muss. -\label{buch:elliptisch:tabelle:loesungsfunktionen}} -\end{table} - -Die elliptischen Funktionen genügen also alle einer nichtlinearen -Differentialgleichung erster Ordnung der selben Art. -Das Quadrat der Ableitung ist ein Polynom vierten Grades der Funktion. -Um dies besser einzufangen, schreiben wir $\operatorname{zn}(u,k)$, -wenn wir eine beliebige der drei Funktionen -$\operatorname{sn}(u,k)$, -$\operatorname{cn}(u,k)$ -oder -$\operatorname{dn}(u,k)$ -meinen. -Die Funktion $\operatorname{zn}(u,k)$ ist also Lösung der -Differentialgleichung -\begin{equation} -\operatorname{zn}'(u,k)^2 -= -\alpha \operatorname{zn}(u,k)^4 + \beta \operatorname{zn}(u,)^2 + \gamma, -\label{buch:elliptisch:eqn:1storderdglell} -\end{equation} -wobei wir mit $\operatorname{zn}'(u,k)$ die Ableitung von -$\operatorname{zn}(u,k)$ nach dem ersten Argument meinen. -Die Koeffizienten $\alpha$, $\beta$ und $\gamma$ hängen von $k$ ab, -vor allem aber haben Sie verschiedene Vorzeichen. -Je nach Vorzeichen sind also eine andere elliptische Funktion als -Lösung zu verwenden. - -% -% Jacobischen elliptische Funktionen und elliptische Integrale -% -\subsubsection{Jacobische elliptische Funktionen als elliptische Integrale} -Die in Tabelle~\ref{buch:elliptisch:tabelle:loesungsfunktionen} -zusammengestellten Differentialgleichungen ermöglichen nun, den -Zusammenhang zwischen den Funktionen -$\operatorname{sn}(u,k)$, $\operatorname{cn}(u,k)$ und $\operatorname{dn}(u,k)$ -und den unvollständigen elliptischen Integralen herzustellen. -Die Differentialgleichungen sind alle von der Form -\begin{equation} -\biggl( -\frac{d y}{d u} -\biggr)^2 -= -p(u), -\label{buch:elliptisch:eqn:allgdgl} -\end{equation} -wobei $p(u)$ ein Polynom vierten Grades in $y$ ist. -Diese Differentialgleichung lässt sich mit Separation lösen. -Dazu zieht man aus~\eqref{buch:elliptisch:eqn:allgdgl} die -Wurzel -\begin{align} -\frac{dy}{du} -= -\sqrt{p(y)} -\notag -\intertext{und trennt die Variablen. Man erhält} -\int\frac{dy}{\sqrt{p(y)}} = u+C. -\label{buch:elliptisch:eqn:yintegral} -\end{align} -Solange $p(y)>0$ ist, ist der Integrand auf der linken Seite -von~\eqref{buch:elliptisch:eqn:yintegral} ebenfalls positiv und -das Integral ist eine monoton wachsende Funktion $F(y)$. -Insbesondere ist $F(y)$ invertierbar. -Die Lösung $y(u)$ der Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl} -ist daher -\[ -y(u) = F^{-1}(u+C). -\] -Die Jacobischen elliptischen Funktionen sind daher inverse Funktionen -der unvollständigen elliptischen Integrale. - -\subsubsection{Differentialgleichung zweiter Ordnung} -Leitet die Differentialgleichung ~\eqref{buch:elliptisch:eqn:1storderdglell} -man dies nochmals nach $u$ ab, erhält man die Differentialgleichung -\[ -2\operatorname{zn}''(u,k)\operatorname{zn}'(u,k) -= -4\alpha \operatorname{zn}(u,k)^3\operatorname{zn}'(u,k) + 2\beta \operatorname{zn}'(u,k)\operatorname{zn}(u,k). -\] -Teilt man auf beiden Seiten durch $2\operatorname{zn}'(u,k)$, -bleibt die nichtlineare -Differentialgleichung -\[ -\frac{d^2\operatorname{zn}}{du^2} -= -\beta \operatorname{zn} + 2\alpha \operatorname{zn}^3. -\] -Dies ist die Gleichung eines harmonischen Oszillators mit einer -Anharmonizität der Form $2\alpha z^3$. - -% -% Differentialgleichung des anharmonischen Oszillators -% -\subsubsection{Differentialgleichung des anharmonischen Oszillators} -Wir möchten die nichtlineare Differentialgleichung -\begin{equation} -\biggl( -\frac{dx}{dt} -\biggr)^2 -= -Ax^4+Bx^2 + C -\label{buch:elliptisch:eqn:allgdgl} -\end{equation} -mit Hilfe elliptischer Funktionen lösen. -Wir nehmen also an, dass die gesuchte Lösung eine Funktion der Form -\begin{equation} -x(t) = a\operatorname{zn}(bt,k) -\label{buch:elliptisch:eqn:loesungsansatz} -\end{equation} -ist. -Die erste Ableitung von $x(t)$ ist -\[ -\dot{x}(t) -= -a\operatorname{zn}'(bt,k). -\] - -Indem wir diesen Lösungsansatz in die -Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl} -einsetzen, erhalten wir -\begin{equation} -a^2b^2 \operatorname{zn}'(bt,k)^2 -= -a^4A\operatorname{zn}(bt,k)^4 -+ -a^2B\operatorname{zn}(bt,k)^2 -+C -\label{buch:elliptisch:eqn:dglx} -\end{equation} -Andererseits wissen wir, dass $\operatorname{zn}(u,k)$ einer -Differentilgleichung der Form~\eqref{buch:elliptisch:eqn:1storderdglell} -erfüllt. -Wenn wir \eqref{buch:elliptisch:eqn:dglx} durch $a^2b^2$ teilen, können wir -die rechte Seite von \eqref{buch:elliptisch:eqn:dglx} mit der rechten -Seite von \eqref{buch:elliptisch:eqn:1storderdglell} vergleichen: -\[ -\frac{a^2A}{b^2}\operatorname{zn}(bt,k)^4 -+ -\frac{B}{b^2}\operatorname{zn}(bt,k)^2 -+\frac{C}{a^2b^2} -= -\alpha\operatorname{zn}(bt,k)^4 -+ -\beta\operatorname{zn}(bt,k)^2 -+ -\gamma\operatorname{zn}(bt,k). -\] -Daraus ergeben sich die Gleichungen -\begin{align} -\alpha &= \frac{a^2A}{b^2}, -& -\beta &= \frac{B}{b^2} -&&\text{und} -& -\gamma &= \frac{C}{a^2b^2} -\label{buch:elliptisch:eqn:koeffvergl} -\intertext{oder aufgelöst nach den Koeffizienten der ursprünglichen -Differentialgleichung} -A&=\frac{\alpha b^2}{a^2} -& -B&=\beta b^2 -&&\text{und}& -C &= \gamma a^2b^2 -\label{buch:elliptisch:eqn:koeffABC} -\end{align} -für die Koeffizienten der Differentialgleichung der zu verwendenden -Funktion. - -Man beachte, dass nach \eqref{buch:elliptisch:eqn:koeffvergl} die -Koeffizienten $A$, $B$ und $C$ die gleichen Vorzeichen haben wie -$\alpha$, $\beta$ und $\gamma$, da in -\eqref{buch:elliptisch:eqn:koeffvergl} nur mit Quadraten multipliziert -wird, die immer positiv sind. -Diese Vorzeichen bestimmen, welche der Funktionen gewählt werden muss. - -In den Differentialgleichungen für die elliptischen Funktionen gibt -es nur den Parameter $k$, der angepasst werden kann. -Es folgt, dass die Gleichungen -\eqref{buch:elliptisch:eqn:koeffvergl} -auch $a$ und $b$ bestimmen. -Zum Beispiel folgt aus der letzten Gleichung, dass -\[ -b = \pm\sqrt{\frac{B}{\beta}}. -\] -Damit folgt dann aus der zweiten -\[ -a=\pm\sqrt{\frac{\beta C}{\gamma B}}. -\] -Die verbleibende Gleichung legt $k$ fest. -Das folgende Beispiel illustriert das Vorgehen am Beispiel einer -Gleichung, die Lösungsfunktion $\operatorname{sn}(u,k)$ verlangt. - -\begin{beispiel} -Wir nehmen an, dass die Vorzeichen von $A$, $B$ und $C$ gemäss -Tabelle~\ref{buch:elliptische:tabelle:loesungsfunktionen} verlangen, -dass die Funktion $\operatorname{sn}(u,k)$ für die Lösung verwendet -werden muss. -Die Tabelle sagt dann auch, dass -$\alpha=k^2$, $\beta=1$ und $\gamma=1$ gewählt werden müssen. -Aus dem Koeffizientenvergleich~\eqref{buch:elliptisch:eqn:koeffvergl} -folgt dann der Reihe nach -\begin{align*} -b&=\pm \sqrt{B} -\\ -a&=\pm \sqrt{\frac{C}{B}} -\\ -k^2 -&= -\frac{AC}{B^2}. -\end{align*} -Man beachte, dass man $k^2$ durch Einsetzen von -\eqref{buch:elliptisch:eqn:koeffABC} -auch direkt aus den Koeffizienten $\alpha$, $\beta$ und $\gamma$ -erhalten kann, nämlich -\[ -\frac{AC}{B^2} -= -\frac{\frac{\alpha b^2}{a^2} \gamma a^2b^2}{\beta^2 b^4} -= -\frac{\alpha\gamma}{\beta^2}. -\qedhere -\] -\end{beispiel} - -Da alle Parameter im -Lösungsansatz~\eqref{buch:elliptisch:eqn:loesungsansatz} bereits -festgelegt sind stellt sich die Frage, woher man einen weiteren -Parameter nehmen kann, mit dem Anfangsbedingungen erfüllen kann. -Die Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl} ist -autonom, die Koeffizienten der rechten Seite der Differentialgleichung -sind nicht von der Zeit abhängig. -Damit ist eine zeitverschobene Funktion $x(t-t_0)$ ebenfalls eine -Lösung der Differentialgleichung. -Die allgmeine Lösung der -Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl} hat -also die Form -\[ -x(t) = a\operatorname{zn}(b(t-t_0)), -\] -wobei die Funktion $\operatorname{zn}(u,k)$ auf Grund der Vorzeichen -von $A$, $B$ und $C$ gewählt werden müssen. - -% -% Das mathematische Pendel -% -\subsection{Das mathematische Pendel -\label{buch:elliptisch:subsection:mathpendel}} -\begin{figure} -\centering -\includegraphics{chapters/110-elliptisch/images/pendel.pdf} -\caption{Mathematisches Pendel -\label{buch:elliptisch:fig:mathpendel}} -\end{figure} -Das in Abbildung~\ref{buch:elliptisch:fig:mathpendel} dargestellte -Mathematische Pendel besteht aus einem Massepunkt der Masse $m$ -im Punkt $P$, -der über eine masselose Stange der Länge $l$ mit dem Drehpunkt $O$ -verbunden ist. -Das Pendel bewegt sich unter dem Einfluss der Schwerebeschleunigung $g$. - -Das Trägheitsmoment des Massepunktes um den Drehpunkt $O$ ist -\( -I=ml^2 -\). -Das Drehmoment der Schwerkraft ist -\(M=gl\sin\vartheta\). -Die Bewegungsgleichung wird daher -\[ -\begin{aligned} -\frac{d}{dt} I\dot{\vartheta} -&= -M -= -gl\sin\vartheta -\\ -ml^2\ddot{\vartheta} -&= -gl\sin\vartheta -&&\Rightarrow& -\ddot{\vartheta} -&=\frac{g}{l}\sin\vartheta -\end{aligned} -\] -Dies ist eine nichtlineare Differentialgleichung zweiter Ordnung, die -wir nicht unmittelbar mit den Differentialgleichungen erster Ordnung -der elliptischen Funktionen vergleichen können. - -Die Differentialgleichungen erster Ordnung der elliptischen Funktionen -enthalten das Quadrat der ersten Ableitung. -In unserem Fall entspricht das einer Gleichung, die $\dot{\vartheta}^2$ -enthält. -Der Energieerhaltungssatz kann uns eine solche Gleichung geben. -Die Summe von kinetischer und potentieller Energie muss konstant sein. -Dies führt auf -\[ -E_{\text{kinetisch}} -+ -E_{\text{potentiell}} -= -\frac12I\dot{\vartheta}^2 -+ -mgl(1-\cos\vartheta) -= -\frac12ml^2\dot{\vartheta}^2 -+ -mgl(1-\cos\vartheta) -= -E -\] -Durch Auflösen nach $\dot{\vartheta}$ kann man jetzt die -Differentialgleichung -\[ -\dot{\vartheta}^2 -= -- -\frac{2g}{l}(1-\cos\vartheta) -+\frac{2E}{ml^2} -\] -finden. -In erster Näherung, d.h. wenn man die rechte Seite bis zu vierten -Potenzen in eine Taylor-Reihe in $\vartheta$ entwickelt, ist dies -tatsächlich eine Differentialgleichung der Art, wie wir sie für -elliptische Funktionen gefunden haben, wir möchten aber eine exakte -Lösung konstruieren. - -Die maximale Energie für eine Bewegung, bei der sich das Pendel gerade -über den höchsten Punkt hinweg zu bewegen vermag, ist -$E=2lmg$. -Falls $E<2mgl$ ist, erwarten wir Schwingungslösungen, bei denen -der Winkel $\vartheta$ immer im offenen Interval $(-\pi,\pi)$ -bleibt. -Für $E>2mgl$ wird sich das Pendel im Kreis bewegen, für sehr grosse -Energie ist die kinetische Energie dominant, die Verlangsamung im -höchsten Punkt wird immer weniger ausgeprägt sein. - -% -% Koordinatentransformation auf elliptische Funktionen -% -\subsubsection{Koordinatentransformation auf elliptische Funktionen} -Wir verwenden als neue Variable -\[ -y = \sin\frac{\vartheta}2 -\] -mit der Ableitung -\[ -\dot{y}=\frac12\cos\frac{\vartheta}{2}\cdot \dot{\vartheta}. -\] -Man beachte, dass $y$ nicht eine Koordinate in -Abbildung~\ref{buch:elliptisch:fig:mathpendel} ist. - -Aus den Halbwinkelformeln finden wir -\[ -\cos\vartheta -= -1-2\sin^2 \frac{\vartheta}2 -= -1-2y^2. -\] -Dies können wir zusammen mit der -Identität $\cos^2\vartheta/2 = 1-\sin^2\vartheta/2 = 1-y^2$ -in die Energiegleichung einsetzen und erhalten -\[ -\frac12ml^2\dot{\vartheta}^2 + mgly^2 = E -\qquad\Rightarrow\qquad -\frac14 \dot{\vartheta}^2 = \frac{E}{2ml^2} - \frac{g}{2l}y^2. -\] -Der konstante Term auf der rechten Seite ist grösser oder kleiner als -$1$ je nachdem, ob das Pendel sich im Kreis bewegt oder nicht. - -Durch Multiplizieren mit $\cos^2\frac{\vartheta}{2}=1-y^2$ -erhalten wir auf der linken Seite einen Ausdruck, den wir -als Funktion von $\dot{y}$ ausdrücken können. -Wir erhalten -\begin{align*} -\frac14 -\cos^2\frac{\vartheta}2 -\cdot -\dot{\vartheta}^2 -&= -\frac14 -(1-y^2) -\biggl(\frac{E}{2ml^2} -\frac{g}{2l}y^2\biggr) -\\ -\dot{y}^2 -&= -\frac{1}{4} -(1-y^2) -\biggl(\frac{E}{2ml^2} -\frac{g}{2l}y^2\biggr) -\end{align*} -Die letzte Gleichung hat die Form einer Differentialgleichung -für elliptische Funktionen. -Welche Funktion verwendet werden muss, hängt von der Grösse der -Koeffizienten in der zweiten Klammer ab. -Die Tabelle~\ref{buch:elliptisch:tabelle:loesungsfunktionen} -zeigt, dass in der zweiten Klammer jeweils einer der Terme -$1$ sein muss. - -% -% Der Fall E < 2mgl -% -\subsubsection{Der Fall $E<2mgl$} -\begin{figure} -\centering -\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/jacobiplots.pdf} -\caption{% -Abhängigkeit der elliptischen Funktionen von $u$ für -verschiedene Werte von $k^2=m$. -Für $m=0$ ist $\operatorname{sn}(u,0)=\sin u$, -$\operatorname{cn}(u,0)=\cos u$ und $\operatorname{dn}(u,0)=1$, diese -sind in allen Plots in einer helleren Farbe eingezeichnet. -Für kleine Werte von $m$ weichen die elliptischen Funktionen nur wenig -von den trigonometrischen Funktionen ab, -es ist aber klar erkennbar, dass die anharmonischen Terme in der -Differentialgleichung die Periode mit steigender Amplitude verlängern. -Sehr grosse Werte von $m$ nahe bei $1$ entsprechen der Situation, dass -die Energie des Pendels fast ausreicht, dass es den höchsten Punkt -erreichen kann, was es für $m$ macht. -\label{buch:elliptisch:fig:jacobiplots}} -\end{figure} - - -Wir verwenden als neue Variable -\[ -y = \sin\frac{\vartheta}2 -\] -mit der Ableitung -\[ -\dot{y}=\frac12\cos\frac{\vartheta}{2}\cdot \dot{\vartheta}. -\] -Man beachte, dass $y$ nicht eine Koordinate in -Abbildung~\ref{buch:elliptisch:fig:mathpendel} ist. - -Aus den Halbwinkelformeln finden wir -\[ -\cos\vartheta -= -1-2\sin^2 \frac{\vartheta}2 -= -1-2y^2. -\] -Dies können wir zusammen mit der -Identität $\cos^2\vartheta/2 = 1-\sin^2\vartheta/2 = 1-y^2$ -in die Energiegleichung einsetzen und erhalten -\[ -\frac12ml^2\dot{\vartheta}^2 + mgly^2 = E. -\] -Durch Multiplizieren mit $\cos^2\frac{\vartheta}{2}=1-y^2$ -erhalten wir auf der linken Seite einen Ausdruck, den wir -als Funktion von $\dot{y}$ ausdrücken können. -Wir erhalten -\begin{align*} -\frac12ml^2 -\cos^2\frac{\vartheta}2 -\dot{\vartheta}^2 -&= -(1-y^2) -(E -mgly^2) -\\ -\frac{1}{4}\cos^2\frac{\vartheta}{2}\dot{\vartheta}^2 -&= -\frac{1}{2} -(1-y^2) -\biggl(\frac{E}{ml^2} -\frac{g}{l}y^2\biggr) -\\ -\dot{y}^2 -&= -\frac{E}{2ml^2} -(1-y^2)\biggl( -1-\frac{2gml}{E}y^2 -\biggr). -\end{align*} -Dies ist genau die Form der Differentialgleichung für die elliptische -Funktion $\operatorname{sn}(u,k)$ -mit $k^2 = 2gml/E< 1$. - -% -% Der Fall E > 2mgl -% -\subsection{Der Fall $E > 2mgl$} -In diesem Fall hat das Pendel im höchsten Punkte immer noch genügend -kinetische Energie, so dass es sich im Kreise dreht. -Indem wir die Gleichung - -XXX Differentialgleichung \\ -XXX Mathematisches Pendel \\ -\subsection{Soliton-Lösungen der Sinus-Gordon-Gleichung} -\subsection{Nichtlineare Differentialgleichung vierter Ordnung} -XXX Möbius-Transformation \\ -XXX Reduktion auf die Differentialgleichung elliptischer Funktionen diff --git a/buch/chapters/110-elliptisch/lemniskate.tex b/buch/chapters/110-elliptisch/lemniskate.tex index 7083b63..04c137d 100644 --- a/buch/chapters/110-elliptisch/lemniskate.tex +++ b/buch/chapters/110-elliptisch/lemniskate.tex @@ -12,33 +12,70 @@ veröffentlich hat. In diesem Abschnitt soll die Verbindung zu den Jacobischen elliptischen Funktionen hergestellt werden. +% +% Lemniskate +% \subsection{Lemniskate \label{buch:gemotrie:subsection:lemniskate}} +Die {\em Lemniskate von Bernoulli} ist die Kurve vierten Grades +mit der Gleichung +\index{Lemniskate von Bernoulli}% +\begin{equation} +(X^2+Y^2)^2 = 2a^2(X^2-Y^2). +\label{buch:elliptisch:eqn:lemniskate} +\end{equation} +Sie ist in Abbildung~\ref{buch:elliptisch:fig:lemniskate} +dargestellt. +Der Fall $a=1/\!\sqrt{2}$ ist eine Kurve mit der Gleichung +\[ +(x^2+y^2)^2 = x^2-y^2, +\] +wir nennen sie die {\em Standard-Lemniskate}. + +\subsubsection{Scheitelpunkte} +Die beiden Scheitel der Lemniskate befinden sich bei $X_s=\pm a\!\sqrt{2}$. +Dividiert man die Gleichung der Lemniskate durch $X_s^2=4a^4$ entsteht +\begin{equation} +\biggl( +\biggl(\frac{X}{a\!\sqrt{2}}\biggr)^2 ++ +\biggl(\frac{Y}{a\!\sqrt{2}}\biggr)^2 +\biggr)^2 += +2\frac{a^2}{2a^2}\biggl( +\biggl(\frac{X}{a\!\sqrt{2}}\biggr)^2 +- +\biggl(\frac{Y}{a\!\sqrt{2}}\biggr)^2 +\biggr). +\qquad +\Leftrightarrow +\qquad +(x^2+y^2)^2 = x^2-y^2, +\label{buch:elliptisch:eqn:lemniskatenormiert} +\end{equation} +wobei wir $x=X/a\!\sqrt{2}$ und $y=Y/a\!\sqrt{2}$ gesetzt haben. +In dieser Normierung, der Standard-Lemniskaten, liegen die Scheitel +bei $\pm 1$. +Dies ist die Skalierung, die für die Definition des lemniskatischen +Sinus und Kosinus verwendet werden soll. \begin{figure} \centering \includegraphics{chapters/110-elliptisch/images/lemniskate.pdf} \caption{Bogenlänge und Radius der Lemniskate von Bernoulli. \label{buch:elliptisch:fig:lemniskate}} \end{figure} -Die Lemniskate von Bernoulli ist die Kurve vierten Grades mit der Gleichung -\begin{equation} -(x^2+y^2)^2 = 2a^2(x^2-y^2). -\label{buch:elliptisch:eqn:lemniskate} -\end{equation} -Sie ist in Abbildung~\ref{buch:elliptisch:fig:lemniskate} -dargestellt. -Die beiden Scheitel der Lemniskate befinden sich bei $x=\pm a/\sqrt{2}$. +\subsubsection{Polarkoordinaten} In Polarkoordinaten $x=r\cos\varphi$ und $y=r\sin\varphi$ -gilt nach Einsetzen in \eqref{buch:elliptisch:eqn:lemniskate} +gilt nach Einsetzen in \eqref{buch:elliptisch:eqn:lemniskatenormiert} \begin{equation} r^4 = -2a^2r^2(\cos^2\varphi-\sin^2\varphi) +r^2(\cos^2\varphi-\sin^2\varphi) = -2a^2r^2\cos2\varphi +r^2\cos2\varphi \qquad\Rightarrow\qquad -r^2 = 2a^2\cos 2\varphi +r^2 = \cos 2\varphi \label{buch:elliptisch:eqn:lemniskatepolar} \end{equation} als Darstellung der Lemniskate in Polardarstellung. @@ -46,20 +83,180 @@ Sie gilt für Winkel $\varphi\in[-\frac{\pi}4,\frac{\pi}4]$ für das rechte Blatt und $\varphi\in[\frac{3\pi}4,\frac{5\pi}4]$ für das linke Blatt der Lemniskate. -Für die Definition des lemniskatischen Sinus wird eine Skalierung -verwendet, die den rechten Scheitel im Punkt $(1,0)$. -Dies ist der Fall für $a=1/\sqrt{2}$, die Gleichung der Lemniskate -wird dann zu +% +% Schnitt eines Kegels mit einem Paraboloid +% +\subsubsection{Schnitt eines Kegels mit einem Paraboloid} +\begin{figure} +\center +\includegraphics{chapters/110-elliptisch/images/kegelpara.pdf} +\caption{Leminiskate (rot) als Projektion (gelb) der Schnittkurve (pink) +eines geraden +Kreiskegels (grün) mit einem Rotationsparaboloid (hellblau). +\label{buch:elliptisch:lemniskate:kegelpara}} +\end{figure}% +\index{Kegel}% +\index{Paraboloid}% +Schreibt man in der Gleichung~\eqref{buch:elliptisch:eqn:lemniskate} +für die Klammer auf der rechten Seite $Z^2 = X^2 - Y^2$, dann wird die +Lemniskate die Projektion in die $X$-$Y$-Ebene der Schnittkurve der Flächen, +die durch die Gleichungen +\begin{equation} +X^2-Y^2 = Z^2 +\qquad\text{und}\qquad +(X^2+Y^2) = R^2 = \!\sqrt{2}aZ +\label{buch:elliptisch:eqn:kegelparabolschnitt} +\end{equation} +beschrieben wird. +Die linke Gleichung in +\eqref{buch:elliptisch:eqn:kegelparabolschnitt} +beschreibt einen geraden Kreiskegel, die rechte ist ein Rotationsparaboloid. +Die Schnittkurve ist in Abbildung~\ref{buch:elliptisch:lemniskate:kegelpara} +dargestellt. + +\subsubsection{Schnitt eines Torus mit einer Ebene} +\begin{figure} +\centering +\includegraphics{chapters/110-elliptisch/images/torusschnitt.pdf} +\caption{Die Schnittkurve (rot) eines Torus (grün) +mit einer zur Torusachse parallelen Ebene (blau), +die den inneren Äquator des Torus berührt, ist eine Lemniskate. +\label{buch:elliptisch:lemniskate:torusschnitt}} +\end{figure} +\index{Torus}% +Schneidet man einen Torus mit einer Ebene, die zur Achse des Torus +parallel ist und den inneren Äquator des Torus berührt, wie in +Abbildung~\ref{buch:elliptisch:lemniskate:torusschnitt}, +entsteht ebenfalls eine Lemniskate, wie in diesem Abschnitt nachgewiesen +werden soll. + +Der in Abbildung~\ref{buch:elliptisch:lemniskate:torusschnitt} +dargestellte Torus mit den Radien $2$ und $1$ hat als Achse die +um eine Einheit in $Z$-Richtung verschobene $Y$-Achse und die +$X$-$Z$-Ebene als Äquatorebene. +Der Torus kann mit +\[ +(u,v) +\mapsto +\begin{pmatrix} +(2+\cos u) \cos v \\ + \sin u \\ +(2+\cos u) \sin v + 1 +\end{pmatrix} +\] +parametrisiert werden, die $u$- und $v$-Koordinatenlinien sind +in der Abbildung gelb eingezeichnet. +Die $v$-Koordinatenlinien sind Breitenkreise um die Achse des Torus. +Aus $u=0$ und $u=\pi$ ergeben sich die Äquatoren des Torus. + +Die Gleichung $Z=0$ beschreibt eine achsparallele Ebene, die den +inneren Äquator berührt. +Die Schnittkurve erfüllt daher \[ -(x^2+y^2)^2 = 2(x^2-y^2). +(2+\cos u)\sin v + 1 = 0, \] +was wir auch als $2 +\cos u = -1/\sin v$ schreiben können. +Wir müssen nachprüfen, dass die Koordinaten +$X=(2+\cos u)\cos v$ und $Y=\sin u$ die Gleichung einer Lemniskate +erfüllen. -\subsubsection{Bogelänge} +Zunächst können wir in der $X$-Koordinate den Klammerausdruck durch +$\sin v$ ausdrücken und erhalten +\begin{equation} +X += +(2+\cos u) \cos v += +-\frac{1}{\sin v}\cos v += +-\frac{\cos v}{\sin v} +\qquad\Rightarrow\qquad +X^2 += +\frac{\cos^2v}{\sin^2 v} += +\frac{1-\sin^2v}{\sin^2 v}. +\label{buch:elliptisch:lemniskate:Xsin} +\end{equation} +Auch die $Y$-Koordinaten können wir durch $v$ ausdrücken, +nämlich +\begin{equation} +Y^2=\sin^2 u = 1-\cos^2 u += +1- +\biggl( +\frac{1}{\sin v} +-2 +\biggr)^2 += +\frac{-3\sin^2 v+4\sin v-1}{\sin^2 v}. +\label{buch:elliptisch:lemniskate:Ysin} +\end{equation} +Die Gleichungen +\eqref{buch:elliptisch:lemniskate:Xsin} +und +\eqref{buch:elliptisch:lemniskate:Ysin} +zeigen, dass man $X^2$ und $Y^2$ sogar einzig durch $\sin v$ +parametrisieren kann. +Um die Ausdrücke etwas zu vereinfachen, schreiben wir $S=\sin v$ +und erhalten zusammenfassend +\begin{equation} +\begin{aligned} +X^2 +&= +\frac{1-S^2}{S^2} +\\ +Y^2 +&= +\frac{-3S^2+4S-1}{S^2}. +\end{aligned} +\end{equation} +Daraus kann man jetzt die Summen und Differenzen der Quadrate +berechnen, sie sind +\begin{equation} +\begin{aligned} +X^2+Y^2 +&= +\frac{-4S^2+4S}{S^2} += +\frac{4S(1-S)}{S^2} += +\frac{4(1-S)}{S} += +4\frac{1-S}{S} +\\ +X^2-Y^2 +&= +\frac{2-4S+2S^2}{S^2} += +\frac{2(1-S)^2}{S^2} += +2\biggl(\frac{1-S}{S}\biggr)^2. +\end{aligned} +\end{equation} +Die Berechnung des Quadrates von $X^2+Y^2$ ergibt die Gleichung +\[ +(X^2+Y^2)^2 += +16 +\biggl(\frac{1-S}{S}\biggr)^2 += +8 \cdot 2 +\biggl(\frac{1-S}{S}\biggr)^2 += +2\cdot 2^2\cdot (X^2-Y^2). +\] +Sie ist eine Lemniskaten-Gleichung für $a=2$. + +% +% Bogenlänge der Lemniskate +% +\subsection{Bogenlänge} Die Funktionen \begin{equation} -x(r) = \frac{r}{\sqrt{2}}\sqrt{1+r^2}, +x(r) = \frac{r}{\!\sqrt{2}}\sqrt{1+r^2}, \quad -y(r) = \frac{r}{\sqrt{2}}\sqrt{1-r^2} +y(r) = \frac{r}{\!\sqrt{2}}\sqrt{1-r^2} \label{buch:geometrie:eqn:lemniskateparam} \end{equation} erfüllen @@ -74,9 +271,9 @@ r^4 = (x(r)^2 + y(r)^2)^2, \end{align*} -sie stellen also eine Parametrisierung der Lemniskate dar. +sie stellen also eine Parametrisierung der Standard-Lemniskate dar. -Mit Hilfe der Parametrsierung~\eqref{buch:geometrie:eqn:lemniskateparam} +Mit Hilfe der Parametrisierung~\eqref{buch:geometrie:eqn:lemniskateparam} kann man die Länge $s$ des in Abbildung~\ref{buch:elliptisch:fig:lemniskate} dargestellten Bogens der Lemniskate berechnen. Dazu benötigt man die Ableitungen nach $r$, die man mit der Produkt- und @@ -84,9 +281,9 @@ Kettenregel berechnen kann: \begin{align*} \dot{x}(r) &= -\frac{\sqrt{1+r^2}}{\sqrt{2}} +\frac{\!\sqrt{1+r^2}}{\!\sqrt{2}} + -\frac{r^2}{\sqrt{2}\sqrt{1+r^2}} +\frac{r^2}{\!\sqrt{2}\sqrt{1+r^2}} &&\Rightarrow& \dot{x}(r)^2 &= @@ -94,13 +291,13 @@ Kettenregel berechnen kann: \\ \dot{y}(r) &= -\frac{\sqrt{1-r^2}}{\sqrt{2}} +\frac{\!\sqrt{1-r^2}}{\!\sqrt{2}} - \frac{r^2}{\sqrt{2}\sqrt{1-r^2}} &&\Rightarrow& \dot{y}(r)^2 &= -\frac{1-r^2}{2} -r^2 + \frac{r^4}{2(1-r^2)} +\frac{1-r^2}{2} -r^2 + \frac{r^4}{2(1-r^2)}. \end{align*} Die Summe der Quadrate ist \begin{align*} @@ -119,53 +316,371 @@ Durch Einsetzen in das Integral für die Bogenlänge bekommt man s(r) = \int_0^r -\frac{1}{\sqrt{1-t^4}}\,dt. +\frac{1}{\!\sqrt{1-t^4}}\,dt. \label{buch:elliptisch:eqn:lemniskatebogenlaenge} \end{equation} -\subsubsection{Darstellung als elliptisches Integral} +% +% Als elliptisches Integral +% +\subsection{Darstellung als elliptisches Integral} Das unvollständige elliptische Integral erster Art mit Parameter -$m=-1$ ist +$k^2=-1$ oder $k=i$ ist \[ -K(r,-1) +K(r,i) += +\int_0^x \frac{dt}{\!\sqrt{(1-t^2)(1-i^2 t^2)}} = -\int_0^x \frac{dt}{\sqrt{(1-t^2)(1-(-1)t^2)}} +\int_0^x \frac{dt}{\!\sqrt{(1-t^2)(1-(-1)t^2)}} = -\int_0^x \frac{dt}{\sqrt{1-t^4}} +\int_0^x \frac{dt}{\!\sqrt{1-t^4}} = s(r). \] Der lemniskatische Sinus ist also eine Umkehrfunktion des -ellptischen Integrals erster Art für einen speziellen Wert des -Parameters $m$ +elliptischen Integrals erster Art für den speziellen Wert $i$ des +Parameters $k$. + +Die Länge des rechten Blattes der Lemniskate wird mit $\varpi$ bezeichnet +und hat den numerischen Wert +\begin{equation} +\varpi += +2\int_0^1\sqrt{\frac{1}{1-t^4}}\,dt += +2.6220575542. +\label{buch:elliptisch:eqn:varpi} +\end{equation} +$\varpi$ ist auch als die {\em lemniskatische Konstante} bekannt. +\index{lemniskatische Konstante}% +Der Lemniskatenbogen zwischen dem Nullpunkt und $(1,0)$ hat die Länge +$\varpi/2$. -\subsubsection{Der lemniskatische Sinus und Kosinus} -Berechnet die Gegenkathete zu einer gegebenen Bogenlänge des Kreises. +% +% Bogenlängenparametrisierung +% +\subsection{Bogenlängenparametrisierung} +\begin{figure} +\centering +\includegraphics{chapters/110-elliptisch/images/lemnispara.pdf} +\caption{Parametrisierung der Lemniskate mit Jacobischen elliptischen +Funktion wie in \eqref{buch:elliptisch:lemniskate:bogeneqn} +\label{buch:elliptisch:lemniskate:bogenpara}} +\end{figure} +Die Lemniskate mit der Gleichung +\[ +(X^2+Y^2)^2=2(X^2-Y^2) +\] +(der Fall $a=1$ in \eqref{buch:elliptisch:eqn:lemniskate}) +kann mit Jacobischen elliptischen Funktionen +parametrisiert werden. +Dazu schreibt man +\begin{equation} +\left. +\begin{aligned} +X(t) +&= +\sqrt{2}\operatorname{cn}(t,k) \operatorname{dn}(t,k) +\\ +Y(t) +&= +\phantom{\sqrt{2}} +\operatorname{cn}(t,k) \operatorname{sn}(t,k) +\end{aligned} +\quad\right\} +\qquad\text{mit $k=\displaystyle\frac{1}{\sqrt{2}}.$} +\label{buch:elliptisch:lemniskate:bogeneqn} +\end{equation} +Abbildung~\ref{buch:elliptisch:lemniskate:bogenpara} zeigt die +Parametrisierung. +Dem Parameterwert $t=0$ entspricht der Scheitelpunkt +$S=(\!\sqrt{2},0)$ der Lemniskate. + +% +% Lemniskatengleichung +% +\subsubsection{Verfikation der Lemniskatengleichung} +Dass \eqref{buch:elliptisch:lemniskate:bogeneqn} +tatsächlich eine Parametrisierung ist, kann dadurch nachgewiesen werden, +dass man die beiden Seiten der definierenden Gleichung der +Lemniskate berechnet. +Zunächst sind die Quadrate von $X(t)$ und $Y(t)$ +\begin{align*} +X(t)^2 +&= +2\operatorname{cn}(t,k)^2 +\operatorname{dn}(t,k)^2 +\\ +Y(t)^2 +&= +\operatorname{cn}(t,k)^2 +\operatorname{sn}(t,k)^2. +\intertext{Für Summe und Differenz der Quadrate findet man jetzt} +X(t)^2+Y(t)^2 +&= +2\operatorname{cn}(t,k)^2 +\bigl( +\underbrace{ +\operatorname{dn}(t,k)^2 ++{\textstyle\frac12} +\operatorname{sn}(t,k)^2 +}_{\displaystyle =1} +\bigr) +%\\ +%& += +2\operatorname{cn}(t,k)^2 +\\ +X(t)^2-Y(t)^2 +&= +\operatorname{cn}(t,k)^2 +\bigl( +2\operatorname{dn}(t,k)^2 - \operatorname{sn}(t,k)^2 +\bigr) +\\ +&= +\operatorname{cn}(t,k)^2 +\bigl( +2\bigl({\textstyle\frac12}+{\textstyle\frac12}\operatorname{cn}(t,k)^2\bigr) +- +\bigl(1-\operatorname{cn}(t,k)^2\bigr) +\bigr) +\\ +&= +2\operatorname{cn}(t,k)^4. +\intertext{Beide lassen sich also durch $\operatorname{cn}(t,k)^2$ +ausdrücken. +Zusammengefasst erhält man} +\Rightarrow\qquad +(X(t)^2+Y(t)^2)^2 +&= +4\operatorname{cn}(t,k)^4 += +2(X(t)^2-Y(t)^2), +\end{align*} +eine Lemniskaten-Gleichung. + +% +% Berechnung der Bogenlänge +% +\subsubsection{Berechnung der Bogenlänge} +Wir zeigen jetzt, dass dies tatsächlich eine Bogenlängenparametrisierung +der Lemniskate ist. +Dazu berechnen wir die Ableitungen +\begin{align*} +\dot{X}(t) +&= +\!\sqrt{2}\operatorname{cn}'(t,k)\operatorname{dn}(t,k) ++ +\!\sqrt{2}\operatorname{cn}(t,k)\operatorname{dn}'(t,k) +\\ +&= +-\!\sqrt{2}\operatorname{sn}(t,k)\operatorname{dn}(t,k)^2 +-\frac12\sqrt{2}\operatorname{sn}(t,k)\operatorname{cn}(t,k)^2 +\\ +&= +-\!\sqrt{2}\operatorname{sn}(t,k)\bigl( +1-{\textstyle\frac12}\operatorname{sn}(t,k)^2 ++{\textstyle\frac12}-{\textstyle\frac12}\operatorname{sn}(t,k)^2 +\bigr) +\\ +&= +\!\sqrt{2}\operatorname{sn}(t,k) +\bigl( +{\textstyle \frac32}-\operatorname{sn}(t,k)^2 +\bigr) +\\ +\dot{Y}(t) +&= +\operatorname{cn}'(t,k)\operatorname{sn}(t,k) ++ +\operatorname{cn}(t,k)\operatorname{sn}'(t,k) +\\ +&= +-\operatorname{sn}(t,k)^2 +\operatorname{dn}(t,k) ++\operatorname{cn}(t,k)^2 +\operatorname{dn}(t,k) +\\ +&= +\operatorname{dn}(t,k)\bigl(1-2\operatorname{sn}(t,k)^2\bigr) +\intertext{und davon die Quadrate} +\dot{X}(t)^2 +&= +2\operatorname{sn}(t,k)^2 +\bigl( +{\textstyle \frac32}-\operatorname{sn}(t,k)^2 +\bigr)^2 +\\ +&= +{\textstyle\frac{9}{2}}\operatorname{sn}(t,k)^2 +- +6\operatorname{sn}(t,k)^4 ++2\operatorname{sn}(t,k)^6 +\\ +\dot{Y}(t)^2 +&= +\bigl(1-{\textstyle\frac12}\operatorname{sn}(t,k)^2\bigr) +\bigl(1-2\operatorname|{sn}(t,k)^2\bigr)^2 +\\ +&= +1-{\textstyle\frac{9}{2}}\operatorname{sn}(t,k)^2 ++6\operatorname{sn}(t,k)^4 +-2\operatorname{sn}(t,k)^6. +\intertext{Für das Bogenlängenintegral wird die Quadratsumme der Ableitungen +benötigt, diese ist} +\dot{X}(t)^2 + \dot{Y}(t)^2 +&= +1. +\intertext{Dies bedeutet, dass die Bogenlänge zwischen den +Parameterwerten $0$ und $t$} +\int_0^t +\sqrt{\dot{X}(\tau)^2 + \dot{Y}(\tau)^2} +\,d\tau +&= +\int_0^s\,d\tau += +t, +\end{align*} +der Parameter $t$ ist also ein Bogenlängenparameter. + +% +% Bogenlängenparametrisierung der Standard-Lemniskate +% +\subsubsection{Bogenlängenparametrisierung der Standard-Lemniskate} +Die mit dem Faktor $1/\sqrt{2}$ skalierte Standard-Lemniskate mit der +Gleichung +\[ +(x^2+y^2)^2 = x^2-y^2 +\] +hat daher eine Bogenlängenparametrisierung mit +\begin{equation} +\left. +\begin{aligned} +x(t) +&= +\phantom{\frac{1}{\!\sqrt{2}}} +\operatorname{cn}(\!\sqrt{2}t,k)\operatorname{dn}(\!\sqrt{2}t,k) +\\ +y(t) +&= +\frac{1}{\!\sqrt{2}} +\operatorname{cn}(\!\sqrt{2}t,k)\operatorname{sn}(\!\sqrt{2}t,k) +\end{aligned} +\quad +\right\} +\qquad +\text{mit $\displaystyle k=\frac{1}{\!\sqrt{2}}.$} +\label{buch:elliptisch:lemniskate:bogenlaenge} +\end{equation} +Der Punkt $t=0$ entspricht dem Scheitelpunkt $S=(1,0)$ der Lemniskate. +Der Parameter misst also die Bogenlänge entlang der Lemniskate ausgehend +vom Scheitel. + +% +% der lemniskatische Sinus und Kosinus +% +\subsection{Der lemniskatische Sinus und Kosinus} +Der Sinus berechnet die Gegenkathete zu einer gegebenen Bogenlänge des +Kreises, er ist die Umkehrfunktion der Funktion, die der Gegenkathete +die Bogenlänge zuordnet. Daher ist es naheliegend, die Umkehrfunktion von $s(r)$ in \eqref{buch:elliptisch:eqn:lemniskatebogenlaenge} den {\em lemniskatischen Sinus} zu nennen mit der Bezeichnung -$r=\operatorname{sl} s$. +\index{lemniskatischer Sinus}% +\index{Sinus, lemniskatischer}% +$r=r(s)=\operatorname{sl} s$. +\index{komplementäre Bogenlänge} +% +% die komplementäre Bogenlänge +% +\subsubsection{Die komplementäre Bogenlänge} Der Kosinus ist der Sinus des komplementären Winkels. Auch für die lemniskatische Bogenlänge $s(r)$ lässt sich eine -komplementäre Bogenlänge definieren, nämlich die Bogenlänge zwischen -dem Punkt $(x(r), y(r))$ und $(1,0)$. -Die Länge des rechten Blattes der Lemniskate wird mit $\varpi$ bezeichnet -und hat den numerischen Wert +komplementäre Bogenlänge $t$ definieren, nämlich die Bogenlänge +zwischen dem Punkt $(x(r), y(r))$ und dem Scheitelpunkt $S=(1,0)$. +Dies ist der Parameter der Parametrisierung +\eqref{buch:elliptisch:lemniskate:bogenlaenge} +des vorangegangenen Abschnittes. +Die Bogenlänge zwischen $O=(0,0)$ und $S=(1,0)$ wurde in +\eqref{buch:elliptisch:eqn:varpi} bereits bereichnet, +sie ist $\varpi/2$. +Damit folgt für die beiden Parameter $s$ und $t$ die Beziehung +$t = \varpi/2 - s$. + +\subsubsection{Der lemniskatische Kosinus} +\begin{figure} +\centering +\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/slcl.pdf} +\caption{ +Lemniskatischer Sinus und Kosinus sowie Sinus und Kosinus +mit derart skaliertem Argument, dass die Funktionen die +gleichen Nullstellen haben. +\label{buch:elliptisch:figure:slcl}} +\end{figure} +Der {\em lemniskatische Kosinus} ist daher +$\operatorname{cl}(s) = \operatorname{sl}(\varpi/2-s)$. +Graphen des lemniskatische Sinus und Kosinus sind in +Abbildung~\ref{buch:elliptisch:figure:slcl} dargestellt. + +Die Parametrisierung~\eqref{buch:elliptisch:lemniskate:bogenlaenge} +ist eine Bogenlängenparametrisierung der Standard-Lemniskate. +Man kann sie verwenden, um $r(t)$ zu berechnen. +Es ist \[ -\varphi +r(t)^2 = -2\int_0^1\sqrt{\frac{1}{1-t^4}}\,dt +x(t)^2 + y(t)^2 = -2.6220575542. +\operatorname{cn}(\!\sqrt{2}t,k)^2 +\biggl( +\operatorname{dn}(\!\sqrt{2}t,k)^2 ++ +\frac12 +\operatorname{sn}(\!\sqrt{2}t,k)^2 +\biggr) += +\operatorname{cn}(\!\sqrt{2}t,k)^2. \] -Lemniskatenbogens zwischen dem Nullpunkt und $(1,0)$ hat die Länge -$\varpi/2$. +Die Wurzel ist +\[ +r(t) += +\operatorname{cn}(\!\sqrt{2}t,{\textstyle\frac{1}{\!\sqrt{2}}}) +. +\] +Der lemniskatische Sinus wurde aber in Abhängigkeit von +$s=\varpi/2-t$ mittels +\[ +\operatorname{sl}s += +r(s) += +\operatorname{cn}(\!\sqrt{2}(\varpi/2-s),k)^2 +\] +definiert. +Der lemniskatische Kosinus ist definiert als der lemniskatische Sinus +\index{lemniskatischer Kosinus}% +\index{Kosinus, lemniskatischer}% +der komplementären Bogenlänge, also +\[ +\operatorname{cl}(s) += +\operatorname{sl}(\varpi/2-s) += +\operatorname{cn}(\!\sqrt{2}s,k)^2. +\] +Die Funktion $\operatorname{sl}(s)$ und $\operatorname{cl}(s)$ sind +in Abbildung~\ref{buch:elliptisch:figure:slcl} dargestellt. +Sie sind beide $2\varpi$-periodisch. +Die Abbildung zeigt ausserdem die Funktionen $\sin (\pi s/\varpi)$ +und $\cos(\pi s/\varpi)$, die ebenfalls $2\varpi$-periodisch sind. + +Die Darstellung des lemniskatischen Sinus und Kosinus durch die +Jacobische elliptische Funktion $\operatorname{cn}(\!\sqrt{2}s,k)$ +zeigt einmal mehr den Nutzen der Jacobischen elliptischen Funktionen. + -Der {\em lemniskatische Kosinus} von $s$ ist derjenige Radiuswert $r$, -für den der Lemniskatenbogen zwischen $(x(r), y(r))$ und $(1,0)$ -die Länge $s$ hat. -XXX Algebraische Beziehungen \\ -XXX Ableitungen \\ diff --git a/buch/chapters/110-elliptisch/mathpendel.tex b/buch/chapters/110-elliptisch/mathpendel.tex new file mode 100644 index 0000000..e029ffd --- /dev/null +++ b/buch/chapters/110-elliptisch/mathpendel.tex @@ -0,0 +1,325 @@ +% +% mathpendel.tex -- Das mathematische Pendel +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% + +\subsection{Das mathematische Pendel +\label{buch:elliptisch:subsection:mathpendel}} +\begin{figure} +\centering +\includegraphics{chapters/110-elliptisch/images/pendel.pdf} +\caption{Mathematisches Pendel +\label{buch:elliptisch:fig:mathpendel}} +\end{figure} +Das in Abbildung~\ref{buch:elliptisch:fig:mathpendel} dargestellte +Mathematische Pendel besteht aus einem Massepunkt der Masse $m$ +im Punkt $P$, +der über eine masselose Stange der Länge $l$ mit dem Drehpunkt $O$ +verbunden ist. +Das Pendel bewegt sich unter dem Einfluss der Schwerebeschleunigung $g$. + +Das Trägheitsmoment des Massepunktes um den Drehpunkt $O$ ist +\( +I=ml^2 +\). +Das Drehmoment der Schwerkraft ist +\(M=gl\sin\vartheta\). +Die Bewegungsgleichung wird daher +\[ +\begin{aligned} +\frac{d}{dt} I\dot{\vartheta} +&= +M += +gl\sin\vartheta +\\ +ml^2\ddot{\vartheta} +&= +gl\sin\vartheta +&&\Rightarrow& +\ddot{\vartheta} +&=\frac{g}{l}\sin\vartheta +\end{aligned} +\] +Dies ist eine nichtlineare Differentialgleichung zweiter Ordnung, die +wir nicht unmittelbar mit den Differentialgleichungen erster Ordnung +der elliptischen Funktionen vergleichen können. + +Die Differentialgleichungen erster Ordnung der elliptischen Funktionen +enthalten das Quadrat der ersten Ableitung. +In unserem Fall entspricht das einer Gleichung, die $\dot{\vartheta}^2$ +enthält. +Der Energieerhaltungssatz kann uns eine solche Gleichung geben. +Die Summe von kinetischer und potentieller Energie muss konstant sein. +Dies führt auf +\begin{equation} +E_{\text{kinetisch}} ++ +E_{\text{potentiell}} += +\frac12I\dot{\vartheta}^2 ++ +mgl(1-\cos\vartheta) += +\frac12ml^2\dot{\vartheta}^2 ++ +mgl(1-\cos\vartheta) += +E. +\label{buch:elliptisch:mathpendel:energiegleichung} +\end{equation} +Durch Auflösen nach $\dot{\vartheta}$ kann man jetzt die +Differentialgleichung +\[ +\dot{\vartheta}^2 += +- +\frac{2g}{l}(1-\cos\vartheta) ++\frac{2E}{ml^2} +\] +finden. +In erster Näherung, d.h. wenn man die rechte Seite bis zu vierten +Potenzen in eine Taylor-Reihe in $\vartheta$ entwickelt, ist dies +tatsächlich eine Differentialgleichung der Art, wie wir sie für +elliptische Funktionen gefunden haben, wir möchten aber eine exakte +Lösung konstruieren. + +Die maximale Energie für eine Bewegung, bei der sich das Pendel gerade +über den höchsten Punkt hinweg zu bewegen vermag, ist +$E=2lmg$. +Falls $E<2mgl$ ist, erwarten wir Schwingungslösungen, bei denen +der Winkel $\vartheta$ immer im offenen Interval $(-\pi,\pi)$ +bleibt. +Für $E>2mgl$ wird sich das Pendel im Kreis bewegen, für sehr grosse +Energie ist die kinetische Energie dominant, die Verlangsamung im +höchsten Punkt wird immer weniger ausgeprägt sein. + + +% +% Koordinatentransformation auf elliptische Funktionen +% +\subsubsection{Koordinatentransformation auf elliptische Funktionen} +Wir verwenden als neue Variable +\begin{align} +y +&= +\sin\frac{\vartheta}2 +&&\Rightarrow& +\cos^2\frac{\vartheta}2 +&= +1-y^2. +\label{buch:elliptisch:mathpendel:ydef} +\intertext{Die Ableitung ist} +\dot{y} +&= +\frac12\cos\frac{\vartheta}{2}\cdot \dot{\vartheta} +&&\Rightarrow& +\dot{y}^2 +&= +\frac14\cos^2\frac{\vartheta}2\cdot\dot{\vartheta}^2. +\label{buch:elliptisch:mathpendel:yabl} +\intertext{% +Man beachte, dass die Koordinate senkrecht zur $x$-Achse in +Abbildung~\ref{buch:elliptisch:fig:mathpendel} die Auslenkung +$l\sin\vartheta$ ist, $y$ ist also nicht die Auslenkung senkrecht +zur $x$-Achse! +Aus den Halbwinkelformeln finden wir ausserdem +} +\cos\vartheta +&= +1-2\sin^2 \frac{\vartheta}2 += +1-2y^2 +&&\Rightarrow& +1-\cos\vartheta +&= +2y^2. +\label{buch:elliptisch:mathpendel:halbwinkel} +\end{align} +Die Grösse $1-\cos\vartheta$ haben wir in der Energiegleichung +\eqref{buch:elliptisch:mathpendel:energiegleichung} +bereits angetroffen. + +Die Identitäten +\eqref{buch:elliptisch:mathpendel:halbwinkel} +%und +%\eqref{buch:elliptisch:mathpendel:ydef} +können wir jetzt in die +Energiegleichung~\eqref{buch:elliptisch:mathpendel:energiegleichung} +einsetzen und erhalten +\begin{align} +\frac12ml^2\dot{\vartheta}^2 + 2mgly^2 +&= +E +\intertext{und nach Division durch $2ml^2$} +\frac14 \dot{\vartheta}^2 +&= +\frac{E}{2ml^2} - \frac{g}{l}y^2. +\label{buch:elliptisch:mathpendel:thetadgl} +\end{align} +%Der konstante Term auf der rechten Seite ist grösser oder kleiner als +%$1$ je nachdem, ob das Pendel sich im Kreis bewegt oder nicht. +Durch Multiplizieren mit der rechten Gleichung von +\eqref{buch:elliptisch:mathpendel:ydef} +erhalten wir auf der linken Seite einen Ausdruck, den wir +mit Hilfe von \eqref{buch:elliptisch:mathpendel:yabl} +als Funktion von $\dot{y}$ ausdrücken können. +Wir erhalten +\begin{align} +\underbrace{\frac14 +\cos^2\frac{\vartheta}2 +\cdot +\dot{\vartheta}^2}_{\displaystyle=\dot{y}^2} +&= +(1-y^2) +\biggl(\frac{E}{2ml^2} -\frac{g}{l}y^2\biggr) +\notag +\\ +\dot{y}^2 +&= +(1-y^2) +\biggl(\frac{E}{2ml^2} -\frac{g}{l}y^2\biggr) +\label{buch:elliptisch:mathpendel:ydgl} +\end{align} +Die letzte Gleichung hat die Form einer Differentialgleichung +für elliptische Funktionen. +Welche Funktion verwendet werden muss, hängt von der relativen +Grösse der Koeffizienten in der zweiten Klammer ab. + +% +% Zeittransformation zur Elimination des konstanten Faktors +% +\subsubsection{Zeittransformation} +Die Gleichung~\eqref{buch:elliptisch:mathpendel:ydgl} kann auch in +die Form +\begin{equation} +\frac{2ml^2}{E}\dot{y}^2 += +(1-y^2)\biggl(1-\frac{2mgl}{E}y^2\biggr) +\label{buch:elliptisch:mathpendel:ydgl2} +\end{equation} +gebracht werden. +Der konstante Faktor auf der linken Seite kann wie in der Diskussion +des anharmonischen Oszillators durch eine lineare +Transformation der Zeit zum Verschwinden gebracht werden. +Dazu setzt man $z(t) = y(bt)$ und bekommt +\[ +\frac{d}{dt}z(t) += +\frac{d}{dt}y(bt) \frac{d\,bt}{dt} += +b\,\dot{y}(bt). +\] +Die Zeit muss also mit dem Faktor $\sqrt{2ml^2/E}$ skaliert werden. + +% +% Nullstellen der rechten Seite der Differentialgleichung +% +\subsubsection{Nullstellen der rechten Seite} +Die rechte Seite von \eqref{buch:elliptisch:mathpendel:ydgl2} +hat die beiden Nullstellen $1$ und +\begin{equation} +y_0=\sqrt{\frac{E}{2mgl}}. +\label{buch:elliptisch:mathpendel:y0} +\end{equation} +Die Differentialgleichung kann damit als +\begin{equation} +\dot{y}^2 += +(1-y^2)\biggl(1-\frac{1}{y_0^2}y^2\biggr) +\label{buch:elliptisch:mathpendel:y0dgl} +\end{equation} +geschrieben werden. +Da die linke Seite $\ge 0$ sein muss, muss +\( +y\le \min(1,y_0) +\) +sein. +Damit ergeben sich zwei Fälle. +Wenn $y_0<1$ ist, dann schwingt das Pendel. +Der Fall $y_0>1$ entspricht einer Bewegung, bei der das Pendel +um den Punkt $O$ rotiert. +In den folgenden zwei Abschnitten werden die beiden Fälle ausführlicher +diskutiert. + + +\begin{figure} +\centering +\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/jacobiplots.pdf} +\caption{% +Abhängigkeit der elliptischen Funktionen von $u$ für +verschiedene Werte von $k^2=m$. +Für $m=0$ ist $\operatorname{sn}(u,0)=\sin u$, +$\operatorname{cn}(u,0)=\cos u$ und $\operatorname{dn}(u,0)=1$, diese +sind in allen Plots in einer helleren Farbe eingezeichnet. +Für kleine Werte von $m$ weichen die elliptischen Funktionen nur wenig +von den trigonometrischen Funktionen ab, +es ist aber klar erkennbar, dass die anharmonischen Terme in der +Differentialgleichung die Periode mit steigender Amplitude verlängern. +Sehr grosse Werte von $m$ nahe bei $1$ entsprechen der Situation, dass +die Energie des Pendels fast ausreicht, dass es den höchsten Punkt +erreichen kann, was es für $m$ macht. +\label{buch:elliptisch:fig:jacobiplots}} +\end{figure} + +\subsubsection{Der Fall $E>2mgl$} +In diesem Fall ist die zweite Nullstelle $y_0>1$ oder $1/y_0^2 < 1$. +Die Differentialgleichung~\eqref{buch:elliptisch:mathpendel:y0dgl} +sieht ganz ähnlich aus wie die Differentialgleichung der +Funktion $\operatorname{sn}(u,k)$, tatsächlich wird sie zur +Differentialgleichung von $\operatorname{sn}(u,k)$ wenn man +\[ +k^2 += +1/y_0^2 += +\frac{2mgl}{E} +\] +wählt. +In diesem Fall ist also $y=\operatorname{sn}(u,1/y_0)$ eine Lösung +der Differentialgleichung, wobei $u$ eine lineare Funktion der Zeit +ist. + +Wenn $y_0 \gg 1$ ist, dann ist $k\approx 0$ und die Bewegung ist +entspricht einer gleichförmigen Kreisbewegung. +Je näher $y_0$ an $1$ liegt, desto näher an $1$ ist auch $k$ und +desto grösser wird die Verlangsamung der Bewgung in der Nähe des +Scheitels, das Pendel verweilt sehr lange. +Dies äussert sich in Abbildung~\ref{buch:elliptisch:fig:jacobiplots} +durch die lange Verweildauer der Funktion nahe der Extrema. + +% +% Der Fall E < 2mgl +% +\subsubsection{Der Fall $E<2mgl$} +In diesem Fall ist $y_0<1$ und die +Differentialgleichung~\eqref{buch:elliptisch:mathpendel:y0dgl} +sieht zwar immer noch wie eine Differentialgleichung für +$\operatorname{sn}(u,k)$ aus, aber die Lage der Nullstellen +der rechten Seite ist verkehrt. +Indem wir $y=y_0z$ schreiben, erhalten wir +\begin{equation} +\dot{y}^2 += +y_0^2 \dot{z}^2 += +(1-y_0^2z^2)(1-z^2). +\end{equation} +Wieder kann durch eine lineare Transformation der Zeit der Faktor $y_0^2$ +auf der linken Seite zum Verschwinden gebracht werden, es bleibt +die Differentialgleichung der Funktion $\operatorname{sn}(u,k)$ +mit $k=y_0$. +Daraus liest man ab, dass $y_0\operatorname{sn}(u,k)$ die Bewegung +des Pendels im oszillatorischen Fall beschreibt, wobei $u$ wieder +eine lineare Funktion der Zeit ist. + +Wenn $y_0\ll 1$ ist, dann ist auch $k$ sehr klein und die lineare +Näherung ist sehr gut, das Pendel verhält sich wie ein harmonischer +Oszillator mit einer Sinus-Schwingung als Lösung. +Für $y_0=k$ nahe an $1$ dagegen erreicht die Schwingung fast den +die maximale Höhe und wird dort sehr langsam. +Dies äussert sich in Abbildung~ +Dies äussert sich in Abbildung~\ref{buch:elliptisch:fig:jacobiplots} +wiederum durch die lange Verweildauer der Funktion nahe der Extrema. + diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex new file mode 100644 index 0000000..af094c6 --- /dev/null +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex @@ -0,0 +1,324 @@ +\label{buch:elliptisch:aufgabe:1} +In einem anharmonische Oszillator oszilliert eine Masse $m$ unter dem +Einfluss einer Kraft, die nach dem Gesetz +\[ +F(x) = -\kappa x + \delta x^3 +\] +von der Auslenkung aus der Ruhelage abhängt. +Nehmen Sie im Folgenden an, dass $\delta >0$ ist, +dass also die rücktreibende Kraft $F(x)$ kleiner ist als bei einem +harmonischen Oszillator. +Ziel der folgenden Teilaufgaben ist, die Lösung $x(t)$ schrittweise +dadurch zu bestimmen, dass die Bewegungsgleichung in die Differentialgleichung +der Jacobischen elliptischen Funktion $\operatorname{sn}(u,k)$ umgeformt +wird. +\begin{teilaufgaben} +\item +Berechnen Sie die Auslenkung $x_0$, bei der die rücktreibende Kraft +verschwindet. +Eine beschränkte Schwingung kann diese Amplitude nicht überschreiten. +\item +Berechnen Sie die potentielle Energie in Abhängigkeit von der +Auslenkung. +\item +\label{buch:1101:basic-dgl} +Formulieren Sie den Energieerhaltungssatz für die Gesamtenergie $E$ +dieses Oszillators. +Leiten Sie daraus eine nichtlineare Differentialgleichung erster Ordnung +for den anharmonischen Oszillator ab, die sie in der Form +$\frac12m\dot{x}^2 = f(x)$ schreiben. +\item +Die Amplitude der Schwingung ist derjenige $x$-Wert, für den die +Geschwindigkeit $\dot{x}(t)$ verschwindet. +Leiten Sie die Amplitude aus der Differentialgleichung von +%\ref{buch:1101:basic-dgl} +Teilaufgabe c) +ab. +Sie erhalten zwei Werte $x_{\pm}$, wobei der kleinere $x_-$ +die Amplitude einer beschränkten Schwingung beschreibt, +während die $x_+$ die minimale Ausgangsamplitude einer gegen +$\infty$ divergenten Lösung ist. +\item +Rechnen Sie nach, dass +\[ +\frac{x_+^2+x_-^2}{2} += +x_0^2 +\qquad\text{und}\qquad +x_-^2x_+^2 += +\frac{4E}{\delta}. +\] +\item +Faktorisieren Sie die Funktion $f(x)$ in der Differentialgleichung +von Teilaufgabe c) mit Hilfe der in Teilaufgabe d) bestimmten +Nullstellen $x_{\pm}^2$. +\item +Dividieren Sie die Differentialgleichung durch $x_-^2$, schreiben +Sie $X=x/x_-$ und bringen Sie die Differentialgleichung in die +Form +\begin{equation} +A \dot{X}^2 += +(1-X^2) +(1-k^2X^2), +\label{buch:1101:eqn:dgl3} +\end{equation} +wobei $k^2=x_-^2/x_+^2$ und $A$ geeignet gewählt werden müssen. +\item +\label{buch:1101:teilaufgabe:dgl3} +Verwenden Sie $t(\tau) = \alpha\tau$ +und +$Y(\tau)=X(t(\tau))=X(\alpha\tau)$ um eine Differentialgleichung für +die Funktion $Y(\tau)$ zu gewinnen, die die Form der Differentialgleichung +von $\operatorname{sn}(u,k)$ hat (Abschnitt +\ref{buch:elliptisch:subsection:differentialgleichungen}), +für die also $A=0$ in \eqref{buch:1101:eqn:dgl3} ist. +\item +Verwenden Sie die Lösung $\operatorname{sn}(u,k)$ der in +Teilaufgabe h) +%\ref{buch:1101:teilaufgabe:dgl3} +erhaltenen Differentialgleichung, +um die Lösung $x(t)$ der ursprünglichen Gleichung aufzuschreiben. +\end{teilaufgaben} + +\begin{loesung} +\begin{figure} +\centering +\includegraphics{chapters/110-elliptisch/uebungsaufgaben/anharmonisch.pdf} +\caption{Rechte Seite der Differentialgleichung +\eqref{buch:1101:eqn:dglf}. +Eine beschränkte Lösung bewegt sich im Bereich $x<x_-$ +während im Bereich $x>x_+$ die Kraft abstossend ist und zu einer +divergenten Lösung führt. +\label{buch:1101:fig:potential} +} +\end{figure} +\begin{teilaufgaben} +\item +Wegen +\[ +F(x) += +-\kappa x\biggl(1-\frac{\delta}{\kappa}x^2\biggr) += +-Ix +\biggl(1-\sqrt{\frac{\delta}{\kappa}}x\biggr) +\biggl(1+\sqrt{\frac{\delta}{\kappa}}x\biggr) +\] +folgt, dass die rücktreibende Kraft bei der Auslenkung $\pm x_0$ mit +\[ +x_0^2 += +\frac{\kappa}{\delta} +\qquad\text{oder}\qquad +x_0 = \sqrt{\frac{\kappa}{\delta}} +\] +verschwindet. +\item +Die potentielle Energie ist die Arbeit, die gegen die rücktreibende Kraft +geleistet wird, um die Auslenkung $x$ zu erreichen. +Sie entsteht durch Integrieren der Kraft über +das Auslenkungsinterval, also +\[ +E_{\text{pot}} += +- +\int_0^x F(\xi) \,d\xi += +\int_0^x \kappa\xi-\delta\xi^3\,d\xi += +\biggl[ +\kappa\frac{\xi^2}{2} +- +\delta +\frac{\xi^4}{4} +\biggr]_0^x += +\kappa\frac{x^2}{2} +- +\delta\frac{x^4}{4}. +\] +\item +Die kinetische Energie ist gegeben durch +\[ +E_{\text{kin}} += +\frac12m\dot{x}^2. +\] +Die Gesamtenergie ist damit +\[ +E += +\frac12m\dot{x}^2 ++ +\kappa +\frac{x^2}{2} +- +\delta +\frac{x^4}{4}. +\] +Die verlangte Umformung ergibt +\begin{align} +\frac12m\dot{x}^2 +&= +E +- +\kappa\frac{x^2}{2} ++ +\delta\frac{x^4}{4} +\label{buch:1101:eqn:dglf} +\end{align} +als Differentialgleichung für $x$. +Die Ableitung $\dot{x}$ hat positives Vorzeichen wenn die Kraft +abstossend ist und negatives Vorzeichen dort, wo die Kraft anziehend ist. +% +\item +Die Amplitude der Schwingung ist derjenige $x$-Wert, für den +die Geschwindigkeit verschwindet, also eine Lösung der Gleichung +\[ +0 += +\frac{2E}{m} -\frac{\kappa}{m}x^2 + \frac{\delta}{2m}x^4. +\] +Der gemeinsame Nenner $m$ spielt offenbar keine Rolle. +Die Gleichung hat die zwei Lösungen +\[ +x_{\pm}^2 += +\frac{\kappa \pm \sqrt{\kappa^2-4E\delta}}{\delta} += +\frac{\kappa}{\delta} +\pm +\sqrt{ +\biggl(\frac{\kappa}{\delta}\biggr)^2 +- +\frac{4E}{\delta} +}. +\] +Die Situation ist in Abbildung~\ref{buch:1101:fig:potential} +Für $x>x_+$ ist die Kraft abstossend, die Lösung divergiert. +Die Lösung mit dem negativen Zeichen $x_-$ bleibt dagegen beschränkt, +dies ist die Lösung, die wir suchen. + +\item +Die beiden Formeln ergeben sich aus den Regeln von Vieta für die +Lösungen einer quadratischen Gleichungg der Form $x^4+px^2+q$. +Die Nullstellen haben den Mittelwert $-p/2$ und das Produkt $q$. + +\item +Die rechte Seite der Differentialgleichung lässt sich mit Hilfe +der beiden Nullstellen $x_{\pm}^2$ faktorisieren und bekommt die Form +\[ +\frac12m\dot{x}^2 += +\frac{\delta}{4}(x_+^2-x^2)(x_-^2-x^2). +\] + +\item +Indem die ganze Gleichung durch $x_-^2$ dividiert wird, entsteht +\[ +\frac12m +\biggl(\frac{\dot{x}}{x_-}\biggr)^2 += +\frac{\delta}{4} +(x_+^2-x^2) +\biggl(1-\frac{x^2}{x_-^2}\biggr). +\] +Schreiben wir $X=x/x_-$ wird daraus +\[ +\frac1{2}m\dot{X}^2 += +\frac{\delta}{4} +\biggl(x_+^2-x_-^2 X^2\biggr) +(1-X^2). +\] +Durch Ausklammern von $x_+^2$ im ersten Faktor wir daraus +\[ +\frac1{2}m\dot{X}^2 += +\frac{\delta}{4} +x_+^2 +\biggl(1-\frac{x_-^2}{x_+^2} X^2\biggr) +(1-X^2). +\] +Mit der Schreibweise $k^2 = x_-^2/x_+^2$ wird die Differentialgleichung +zu +\begin{equation} +\frac{2m}{\delta x_+^2} \dot{X}^2 += +(1-X^2)(1-k^2X^2), +\label{buch:1101:eqn:dgl2} +\end{equation} +was der Differentialgleichung für die Jacobische elliptische Funktion +$\operatorname{sn}(u,k)$ bereits sehr ähnlich sieht. +\item +Bis auf den Faktor vor $\dot{X}^2$ ist +\eqref{buch:1101:eqn:dgl2} +die Differentialgleichung +von +$\operatorname{sn}(u,k)$. +Um den Faktor zum Verschwinden zu bringen, schreiben wir +$t(\tau) = \alpha\tau$. +Die Ableitung von $Y(\tau)=X(t(\tau))$ nach $\tau$ ist +\[ +\frac{dY}{d\tau} += +\dot{X}(t(\tau))\frac{dt}{d\tau} += +\alpha +\dot{X}(t(\tau)) +\quad\Rightarrow\quad +\frac{1}{\alpha}\frac{dY}{d\tau} += +\dot{X}(t(\tau)) +\quad\Rightarrow\quad +\frac{1}{\alpha^2}\biggl(\frac{dY}{d\tau}\biggr)^2 += +\dot{X}(t(\tau))^2. +\] +Die Differentialgleichung für $Y(\tau)$ ist +\[ +\frac{2m}{\delta x_+^2\alpha^2} +\biggl( +\frac{dY}{d\tau} +\biggr)^2 += +(1-Y^2)(1-k^2Y^2). +\] +Der Koeffizient vor der Ableitung wird $1$, wenn man +\[ +\alpha^2 += +\frac{2m}{\delta x_+^2} +\] +wählt. +Diese Differentialgleichug hat die Lösung +\[ +Y(\tau) = \operatorname{sn}(\tau,k). +\] +\item +Indem man die gefunden Grössen einsetzt kann man jetzt die Lösung +der Differentialgleichung in geschlossener Form als +\begin{align*} +x(t) +&= +x_- X(t) += +x_- \operatorname{sn}\biggl( +t\sqrt{\frac{\delta x_+^2}{2m} } +,k +\biggr). +\end{align*} +Das Produkt $\delta x_+^2$ kann auch als +\[ +\delta x_+^2 += +\kappa+\sqrt{\kappa -4\delta E} +\] +geschrieben werden. +\qedhere +\end{teilaufgaben} +\end{loesung} + + diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/2.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/2.tex new file mode 100644 index 0000000..dbf184a --- /dev/null +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/2.tex @@ -0,0 +1,65 @@ +\label{buch:elliptisch:aufgabe:2}% +Die Landen-Transformation basiert auf der Iteration +\begin{equation} +\begin{aligned} +k_{n+1} +&= +\frac{1-k_n'}{1+k_n'} +& +&\text{und}& +k_{n+1}' +&= +\sqrt{1-k_{n+1}^2} +\end{aligned} +\label{buch:elliptisch:aufgabe:2:iteration} +\end{equation} +mit den Startwerten $k_0 = k$ und $k_0' = \sqrt{1-k_0^2}$. +Zeigen Sie, dass $k_n\to 0$ und $k_n'\to 1$ mit quadratischer Konvergenz. + +\begin{loesung} +\begin{table} +\centering +\begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} +\hline +n & k & k'% +\mathstrut\text{\vrule height12pt depth6pt width0pt}% +\\ +\hline +\mathstrut\text{\vrule height12pt depth0pt width0pt}% +0 & 0.200000000000000 & 0.979795897113271 \\ +1 & 0.010205144336438 & 0.999947926158694 \\ +2 & 0.000026037598592 & 0.999999999661022 \\ +3 & 0.000000000169489 & 1.000000000000000 \\ +4 & 0.000000000000000 & 1.000000000000000% +\mathstrut\text{\vrule height0pt depth6pt width0pt}\\ +\hline +\end{tabular} +\caption{Numerisches Experiment zur Folge $(k_n,k_n')$ +gemäss \eqref{buch:elliptisch:aufgabe:2:iteration} +mit $k_0=0.2$ +\label{buch:ellptisch:aufgabe:2:numerisch}} +\end{table} +Es ist klar, dass $k'_n\to 1$ folgt, wenn man zeigen kann, dass +$k_n\to 0$ gilt. +Wir berechnen daher +\begin{align*} +k_{n+1} +&= +\frac{1-k_n'}{1+k_n'} += +\frac{1-\sqrt{1-k_n^2}}{1+\sqrt{1-k_n^2}} +\intertext{und erweitern mit dem Nenner $1+\sqrt{1-k_n^2}$ um} +&= +\frac{1-(1-k_n^2)}{(1+\sqrt{1-k_n^2})^2} += +\frac{ k_n^2 }{(1+\sqrt{1-k_n^2})^2} +\le +k_n^2 +\end{align*} +zu erhalten. +Daraus folgt jetzt sofort die quadratische Konvergenz von $k_n$ gegen $0$. + +Ein einfaches numerisches Experiment (siehe +Tabelle~\ref{buch:ellptisch:aufgabe:2:numerisch}) +bestätigt die quadratische Konvergenz der Folgen. +\end{loesung} diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/3.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/3.tex new file mode 100644 index 0000000..a5d118f --- /dev/null +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/3.tex @@ -0,0 +1,135 @@ +\label{buch:elliptisch:aufgabe:3}% +Aus der in Aufgabe~\ref{buch:elliptisch:aufgabe:2} konstruierten Folge +$k_n$ kann zu einem vorgegebenen $u$ ausserdem die Folge $u_n$ +mit der Rekursionsformel +\[ +u_{n+1} = \frac{u_n}{1+k_{n+1}} +\] +und Anfangswert $u_0=u$ konstruiert werden. +Die Landen-Transformation (siehe \cite[80]{buch:ellfun-applications}) +\index{Landen-Transformation}% +führt auf die folgenden Formeln für die Jacobischen elliptischen Funktionen: +\begin{equation} +\left.\qquad +\begin{aligned} +\operatorname{sn}(u_n,k_n) +&= +\frac{ +(1+k_{n+1})\operatorname{sn}(u_{n+1},k_{n+1}) +}{ +1 + k_{n+1} \operatorname{sn}(u_{n+1},k_{n+1})^2 +} +\\ +\operatorname{cn}(u_n,k_n) +&= +\frac{ +\operatorname{cn}(u_{n+1},k_{n+1}) +\operatorname{dn}(u_{n+1},k_{n+1}) +}{ +1 + k_{n+1} \operatorname{sn}(u_{n+1},k_{n+1})^2 +} +\\ +\operatorname{dn}(u_n,k_n) +&= +\frac{ +1 - k_{n+1} \operatorname{sn}(u_{n+1},k_{n+1})^2 +}{ +1 + k_{n+1} \operatorname{sn}(u_{n+1},k_{n+1})^2 +} +\end{aligned} +\qquad\right\} +\label{buch:elliptisch:aufgabe:3:gauss} +\end{equation} +Die Transformationsformeln +\eqref{buch:elliptisch:aufgabe:3:gauss} +sind auch als Gauss-Transformation bekannt. +\index{Gauss-Transformation}% +Konstruieren Sie daraus einen numerischen Algorithmus, mit dem sich +gleichzeitig die Werte aller drei Jacobischen elliptischen Funktionen +für vorgegebene Parameterwerte $u$ und $k$ berechnen lassen. + +\begin{loesung} +In der ersten Phase des Algorithmus werden die Folgen $k_n$ und $k_n'$ +sowie $u_n$ bis zum Folgenindex $N$ berechnet, bis $k_N\approx 0$ +angenommen werden darf. +Dann gilt +\begin{align*} +\operatorname{sn}(u_N, k_N) &= \operatorname{sn}(u_N,0) = \sin u_N +\\ +\operatorname{cn}(u_N, k_N) &= \operatorname{cn}(u_N,0) = \cos u_N +\\ +\operatorname{dn}(u_N, k_N) &= \operatorname{dn}(u_N,0) = 1. +\end{align*} +In der zweiten Phase des Algorithmus können für absteigende +$n$ jeweils die Formeln~\eqref{buch:elliptisch:aufgabe:3:gauss} +angewendet werden um nacheinander die Werte der Jacobischen +elliptischen Funktionen für Argument $u_n$ und Parameter $k_n$ +für $n=N-1,N-2,\dots,0$ zu bekommen. +\end{loesung} +\begin{table} +\centering +\begin{tikzpicture}[>=latex,thick] +\def\pfeil#1#2{ + \fill[color=#1!30] (-0.5,1) -- (-0.5,-1) -- (-0.8,-1) + -- (0,-1.5) -- (0.8,-1) -- (0.5,-1) -- (0.5,1) -- cycle; + \node[color=white] at (0,-0.2) [scale=5] {\sf #2\strut}; +} +\begin{scope}[xshift=-4.9cm,yshift=0.2cm] +\pfeil{red}{1} +\end{scope} + +\begin{scope}[xshift=-2.3cm,yshift=0.2cm] +\pfeil{red}{1} +\end{scope} + +\begin{scope}[xshift=0.35cm,yshift=-0.3cm,yscale=-1] +\pfeil{blue}{2} +\end{scope} + +\begin{scope}[xshift=2.92cm,yshift=-0.3cm,yscale=-1] +\pfeil{blue}{2} +\end{scope} + +\begin{scope}[xshift=5.60cm,yshift=-0.3cm,yscale=-1] +\pfeil{blue}{2} +\end{scope} + +\node at (0,0) { +\begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} +\hline +n & k_n & u_n & \operatorname{sn}(u_n,k_n) & \operatorname{cn}(u_n,k_n) & \operatorname{dn}(u_n,k_n)% +\mathstrut\text{\vrule height12pt depth6pt width0pt} \\ +\hline +\mathstrut\text{\vrule height12pt depth0pt width0pt}% +%\small +0 & 0.90000000000 & 0.60000000000 & 0.54228232286 & 0.84019633556 & 0.87281338478 \\ +1 & 0.39286445838 & 0.43076696830 & 0.41576897816 & 0.90947026163 & 0.98656969610 \\ +2 & 0.04188568608 & 0.41344935827 & 0.40175214109 & 0.91574844642 & 0.99985840483 \\ +3 & 0.00043898784 & 0.41326793867 & 0.40160428679 & 0.91581329801 & 0.99999998445 \\ +4 & 0.00000004817 & 0.41326791876 & 0.40160427056 & 0.91581330513 & 1.00000000000 \\ +5 & 0.00000000000 & 0.41326791876 & 0.40160427056 & 0.91581330513 & 1.00000000000 \\ +%N & 0.00000000000 & 0.41326791876 & 0.40160427056 & 0.91581330513 & 1.00000000000% +N & & 0.41326791876 & \sin u_N & \cos u_N & 1% +%0 & 0.900000000000000 & 0.600000000000000 & 0.542282322869158 & 0.840196335569032 & 0.872813384788490 \\ +%1 & 0.392864458385019 & 0.430766968306220 & 0.415768978168966 & 0.909470261631645 & 0.986569696107075 \\ +%2 & 0.041885686080039 & 0.413449358275499 & 0.401752141098324 & 0.915748446421239 & 0.999858404836479 \\ +%3 & 0.000438987841605 & 0.413267938675096 & 0.401604286793186 & 0.915813298019491 & 0.999999984459261 \\ +%4 & 0.000000048177586 & 0.413267918764845 & 0.401604270565476 & 0.915813305135699 & 1.000000000000000 \\ +%5 & 0.000000000000001 & 0.413267918764845 & 0.401604270565476 & 0.915813305135699 & 1.000000000000000 \\ +%N & 0.000000000000000 & 0.413267918764845 & 0.401604270565476 & 0.915813305135699 & 1.000000000000000 \\ +\mathstrut\text{\vrule height12pt depth6pt width0pt} \\ +\hline +\end{tabular} +}; +\end{tikzpicture} +\caption{Durchführung des auf der Landen-Transformation basierenden +Algorithmus zur Berechnung der Jacobischen elliptischen Funktionen +für $u=0.6$ und $k=0.9$. +Die erste Phase (rot) berechnet die Folgen $k_n$ und $u_n$, die zweite +(blau) +transformiert die Wert der trigonometrischen Funktionen in die Werte +der Jacobischen elliptischen Funktionen. +\label{buch:elliptisch:aufgabe:3:resultate}} +\end{table} + + diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/4.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/4.tex new file mode 100644 index 0000000..8814090 --- /dev/null +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/4.tex @@ -0,0 +1,75 @@ +\label{buch:elliptisch:aufgabe:4} +Es ist bekannt, dass $\operatorname{sn}(K+iK', k) = 1/k$ gilt. +Verwenden Sie den Algorithmus von Aufgabe~\ref{buch:elliptisch:aufgabe:3}, +um dies für $k=\frac12$ nachzurechnen. + +\begin{loesung} +\begin{table} +\centering +\renewcommand{\tabcolsep}{5pt} +\begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} +\hline + n & k_n & u_n & \operatorname{sn}(u_n,k_n)% +\mathstrut\text{\vrule height12pt depth6pt width0pt}% +\\ +\hline +\mathstrut\text{\vrule height12pt depth0pt width0pt}% + 0 & 0.500000000000000 & 1.685750354812596 + 2.156515647499643i & 2.000000000000000 \\ + 1 & 0.071796769724491 & 1.572826493259468 + 2.012056490946491i & 3.732050807568877 \\ + 2 & 0.001292026239995 & 1.570796982340579 + 2.009460215619685i & 3.796651109009551 \\ + 3 & 0.000000417333300 & 1.570796326794965 + 2.009459377005374i & 3.796672364209438 \\ + 4 & 0.000000000000044 & 1.570796326794897 + 2.009459377005286i & 3.796672364211658 \\ + N & 0.000000000000000 & 1.570796326794897 + 2.009459377005286i & 3.796672364211658% +\mathstrut\text{\vrule height12pt depth6pt width0pt}% +\\ +\hline +\end{tabular} +\caption{Berechnung von $\operatorname{sn}(K+iK',k)=1/k$ mit Hilfe der Landen-Transformation. +Konvergenz der Folge $k_n$ ist bei $N=5$ eintegreten. +\label{buch:elliptisch:aufgabe:4:table}} +\end{table} +Zunächst müssen wir mit dem Algorithmus des arithmetisch-geometrischen +Mittels +\[ +K(k) +\approx +1.685750354812596 +\qquad\text{und}\qquad +K(k') +\approx +2.156515647499643 +\] +berechnen. +Aus $k=\frac12$ kann man jetzt die Folgen $k_n$ und $u_n$ berechnen, die innert +$N=5$ Iterationen konvergiert. +Sie führt auf +\[ +u_N += +\frac{\pi}2 + 2.009459377005286i += +\frac{\pi}2 + bi. +\] +Jetzt muss der Sinus von $u_N$ berechnet werden. +Dazu verwenden wir die komplexe Darstellung: +\[ +\sin u_N += +\frac{e^{i\frac{\pi}2-b} - e^{-i\frac{\pi}2+b}}{2i} += +\frac{ie^{-b}+ie^{b}}{2i} += +\cosh b += +3.796672364211658. +\] +Da der Wert $\operatorname{sn}(u_N,k_N) = \sin u_N$ reell ist, wird auch +die daraus wie in Aufgabe~\ref{buch:elliptisch:aufgabe:3} +konstruierte Folge $\operatorname{sn}(u_n,k_n)$ reell sein. +Die Werte von $\operatorname{cn}(u_n,k_n)$ und $\operatorname{dn}(u_n,k_n)$ +werden für die Iterationsformeln~\eqref{buch:elliptisch:aufgabe:3:gauss} +für $\operatorname{sn}(u_n,k_n)$ nicht benötigt. +Die Berechnung ist in Tabelle~\ref{buch:elliptisch:aufgabe:4:table} +zusammengefasst. +Man liest ab, dass $\operatorname{sn}(K+iK',k)=2 = 1/k$, wie erwartet. +\end{loesung} diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/5.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/5.tex new file mode 100644 index 0000000..fa018ca --- /dev/null +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/5.tex @@ -0,0 +1,59 @@ +\label{buch:elliptisch:aufgabe:5} +Die sehr schnelle Konvergenz des arithmetisch-geometrische Mittels +kann auch dazu ausgenutzt werden, eine grosse Zahl von Stellen der +Kreiszahl $\pi$ zu berechnen. +Almkvist und Berndt haben gezeigt \cite{buch:almkvist-berndt}, dass +\[ +\pi += +\frac{4 M(1,\!\sqrt{2}/2)^2}{ +\displaystyle 1-\sum_{n=1}^\infty 2^{n+1}(a_n^2-b_n^2) +}. +\] +Verwenden Sie diese Formel, um Approximationen von $\pi$ zu berechnen. + +\begin{loesung} +\begin{table} +\centering +\begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} +\hline +n & a_n & b_n & \pi_n% +\mathstrut\text{\vrule height12pt depth6pt width0pt}\\ +\hline +\mathstrut\text{\vrule height12pt depth0pt width0pt}% +0 & 1.000000000000000 & 0.707106781186548 & +\mathstrut\text{\vrule height12pt depth0pt width0pt}\\ +1 & 0.853553390593274 & 0.840896415253715 & 3.\underline{1}87672642712106 \\ +2 & 0.847224902923494 & 0.847201266746892 & 3.\underline{141}680293297648 \\ +3 & 0.847213084835193 & 0.847213084752765 & 3.\underline{141592653}895451 \\ +4 & 0.847213084793979 & 0.847213084793979 & 3.\underline{141592653589}822 \\ +5 & 0.847213084793979 & 0.847213084793979 & 3.\underline{141592653589}871% +\mathstrut\text{\vrule height0pt depth6pt width0pt}\\ +\hline +\infty & & & 3.141592653589793% +\mathstrut\text{\vrule height12pt depth6pt width0pt}\\ +\hline +\end{tabular} +\caption{Approximationen der Kreiszahl $\pi$ mit Hilfe des Algorithmus +des arithmetisch-geometrischen Mittels. +In nur 4 Schritten werden 12 Stellen Genauigkeit erreicht. +\label{buch:elliptisch:aufgabe:5:table}} +\end{table} +Wir schreiben +\[ +\pi_n += +\frac{4 a_k^2}{ +\displaystyle +1-\sum_{k=1}^\infty 2^{k+1}(a_k^2-b_k^2) +} +\] +für die Approximationen von $\pi$, +wobei $a_k$ und $b_k$ die Folgen der arithmetischen und geometrischen +Mittel von $1$ und $\!\sqrt{2}/2$ sind. +Die Tabelle~\ref{buch:elliptisch:aufgabe:5:table} zeigt die Resultat. +In nur 4 Schritten können 12 Stellen Genauigkeit erreicht werden, +dann beginnen jedoch bereits Rundungsfehler das Resultat zu beinträchtigen. +Für die Berechnung einer grösseren Zahl von Stellen muss daher mit +grösserer Präzision gerechnet werden. +\end{loesung} diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/Makefile b/buch/chapters/110-elliptisch/uebungsaufgaben/Makefile new file mode 100644 index 0000000..0ca5234 --- /dev/null +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/Makefile @@ -0,0 +1,8 @@ +# +# Makefile +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# + +anharmonisch.pdf: anharmonisch.tex + pdflatex anharmonisch.tex diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.pdf b/buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.pdf Binary files differnew file mode 100644 index 0000000..4b00f4d --- /dev/null +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.pdf diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.tex new file mode 100644 index 0000000..a00c393 --- /dev/null +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.tex @@ -0,0 +1,62 @@ +% +% anharmonisch.tex -- Potential einer anharmonischen Schwingung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\definecolor{darkgreen}{rgb}{0,0.6,0} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\def\E{3} +\def\K{0.2} +\def\D{0.0025} + +\pgfmathparse{sqrt(\K/\D)} +\xdef\xnull{\pgfmathresult} + +\pgfmathparse{sqrt((\K+sqrt(\K*\K-4*\E*\D))/\D)} +\xdef\xplus{\pgfmathresult} +\pgfmathparse{sqrt((\K-sqrt(\K*\K-4*\E*\D))/\D)} +\xdef\xminus{\pgfmathresult} + +\def\xmax{13} + +\fill[color=darkgreen!20] (0,-1.5) rectangle (\xminus,4.7); +\node[color=darkgreen] at ({0.5*\xminus},4.7) [below] {anziehende Kraft\strut}; + +\fill[color=orange!20] (\xplus,-1.5) rectangle (\xmax,4.7); +\node[color=orange] at ({0.5*(\xplus+\xmax)},4.7) [below] {abstossende\strut}; +\node[color=orange] at ({0.5*(\xplus+\xmax)},4.3) [below] {Kraft\strut}; + +\node[color=gray] at (\xnull,4.7) [below] {verbotener Bereich\strut}; + +\draw (-0.1,\E) -- (0.1,\E); +\node at (-0.1,\E) [left] {$E$}; + +\draw[color=red,line width=1pt] + plot[domain=0:13,samples=100] + ({\x},{\E-(0.5*\K-0.25*\D*\x*\x)*\x*\x}); + +\draw[->] (-0.1,0) -- ({\xmax+0.3},0) coordinate[label={$x$}]; +\draw[->] (0,-1.5) -- (0,5) coordinate[label={right:$f(x)$}]; + +\fill[color=blue] (\xminus,0) circle[radius=0.08]; +\node[color=blue] at (\xminus,0) [below left] {$x_-\mathstrut$}; + +\fill[color=blue] (\xplus,0) circle[radius=0.08]; +\node[color=blue] at (\xplus,0) [below right] {$x_+\mathstrut$}; + +\fill[color=blue] (\xnull,0) circle[radius=0.08]; +\node[color=blue] at (\xnull,0) [below] {$x_0\mathstrut$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/landen.m b/buch/chapters/110-elliptisch/uebungsaufgaben/landen.m new file mode 100644 index 0000000..bba5549 --- /dev/null +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/landen.m @@ -0,0 +1,60 @@ +# +# landen.m +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +N = 10; + +function retval = M(a,b) + for i = (1:10) + A = (a+b)/2; + b = sqrt(a*b); + a = A; + endfor + retval = a; +endfunction; + +function retval = EllipticKk(k) + retval = pi / (2 * M(1, sqrt(1-k^2))); +endfunction + +k = 0.5; +kprime = sqrt(1-k^2); + +EK = EllipticKk(k); +EKprime = EllipticKk(kprime); + +u = EK + EKprime * i; + +K = zeros(N,3); +K(1,1) = k; +K(1,2) = kprime; +K(1,3) = u; + +format long + +for n = (2:N) + K(n,1) = (1-K(n-1,2)) / (1+K(n-1,2)); + K(n,2) = sqrt(1-K(n,1)^2); + K(n,3) = K(n-1,3) / (1 + K(n,1)); +end + +K(:,[1,3]) + +pi / 2 + +scd = zeros(N,3); +scd(N,1) = sin(K(N,3)); +scd(N,2) = cos(K(N,3)); +scd(N,3) = 1; + +for n = (N:-1:2) + nenner = 1 + K(n,1) * scd(n, 1)^2; + scd(n-1,1) = (1+K(n,1)) * scd(n, 1) / nenner; + scd(n-1,2) = scd(n, 2) * scd(n, 3) / nenner; + scd(n-1,3) = (1 - K(n,1) * scd(n,1)^2) / nenner; +end + +scd(:,1) + +cosh(2.009459377005286) |