aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/110-elliptisch
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2022-06-16 20:17:52 +0200
committerAndreas Müller <andreas.mueller@ost.ch>2022-06-16 20:17:52 +0200
commitf89f84ab92053e53f4760d92ae311444bb5a7986 (patch)
treef31b78befc17f8f19853059ced712a79095ff995 /buch/chapters/110-elliptisch
parentadd missing file (diff)
downloadSeminarSpezielleFunktionen-f89f84ab92053e53f4760d92ae311444bb5a7986.tar.gz
SeminarSpezielleFunktionen-f89f84ab92053e53f4760d92ae311444bb5a7986.zip
Reorganisation
Diffstat (limited to '')
-rw-r--r--buch/chapters/110-elliptisch/mathpendel.tex38
1 files changed, 20 insertions, 18 deletions
diff --git a/buch/chapters/110-elliptisch/mathpendel.tex b/buch/chapters/110-elliptisch/mathpendel.tex
index d61bcf6..39cb418 100644
--- a/buch/chapters/110-elliptisch/mathpendel.tex
+++ b/buch/chapters/110-elliptisch/mathpendel.tex
@@ -94,6 +94,24 @@ Für $E>2mgl$ wird sich das Pendel im Kreis bewegen, für sehr grosse
Energie ist die kinetische Energie dominant, die Verlangsamung im
höchsten Punkt wird immer weniger ausgeprägt sein.
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/jacobiplots.pdf}
+\caption{%
+Abhängigkeit der elliptischen Funktionen von $u$ für
+verschiedene Werte von $k^2=m$.
+Für $m=0$ ist $\operatorname{sn}(u,0)=\sin u$,
+$\operatorname{cn}(u,0)=\cos u$ und $\operatorname{dn}(u,0)=1$, diese
+sind in allen Plots in einer helleren Farbe eingezeichnet.
+Für kleine Werte von $m$ weichen die elliptischen Funktionen nur wenig
+von den trigonometrischen Funktionen ab,
+es ist aber klar erkennbar, dass die anharmonischen Terme in der
+Differentialgleichung die Periode mit steigender Amplitude verlängern.
+Sehr grosse Werte von $m$ nahe bei $1$ entsprechen der Situation, dass
+die Energie des Pendels fast ausreicht, dass es den höchsten Punkt
+erreichen kann, was es für $m$ macht.
+\label{buch:elliptisch:fig:jacobiplots}}
+\end{figure}
%
% Koordinatentransformation auf elliptische Funktionen
%
@@ -160,24 +178,6 @@ $1$ sein muss.
% Der Fall E < 2mgl
%
\subsubsection{Der Fall $E<2mgl$}
-\begin{figure}
-\centering
-\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/jacobiplots.pdf}
-\caption{%
-Abhängigkeit der elliptischen Funktionen von $u$ für
-verschiedene Werte von $k^2=m$.
-Für $m=0$ ist $\operatorname{sn}(u,0)=\sin u$,
-$\operatorname{cn}(u,0)=\cos u$ und $\operatorname{dn}(u,0)=1$, diese
-sind in allen Plots in einer helleren Farbe eingezeichnet.
-Für kleine Werte von $m$ weichen die elliptischen Funktionen nur wenig
-von den trigonometrischen Funktionen ab,
-es ist aber klar erkennbar, dass die anharmonischen Terme in der
-Differentialgleichung die Periode mit steigender Amplitude verlängern.
-Sehr grosse Werte von $m$ nahe bei $1$ entsprechen der Situation, dass
-die Energie des Pendels fast ausreicht, dass es den höchsten Punkt
-erreichen kann, was es für $m$ macht.
-\label{buch:elliptisch:fig:jacobiplots}}
-\end{figure}
Wir verwenden als neue Variable
@@ -234,6 +234,8 @@ Dies ist genau die Form der Differentialgleichung für die elliptische
Funktion $\operatorname{sn}(u,k)$
mit $k^2 = 2gml/E< 1$.
+XXX Verbindung zur Abbildung
+
%%
%% Der Fall E > 2mgl
%%