aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters
diff options
context:
space:
mode:
authorNicolas Tobler <nicolas.tobler@ost.ch>2022-08-14 15:40:49 +0200
committerNicolas Tobler <nicolas.tobler@ost.ch>2022-08-14 15:40:49 +0200
commit14af017af260d31f8e254e158aaa8dc285890006 (patch)
tree183cbb155f014a433cef63127e9923068cf68063 /buch/chapters
parentcorrections (diff)
parentMerge pull request #47 from f1bi1n/master (diff)
downloadSeminarSpezielleFunktionen-14af017af260d31f8e254e158aaa8dc285890006.tar.gz
SeminarSpezielleFunktionen-14af017af260d31f8e254e158aaa8dc285890006.zip
Merge branch 'master' of https://github.com/AndreasFMueller/SeminarSpezielleFunktionen
Diffstat (limited to '')
-rw-r--r--buch/chapters/030-geometrie/hyperbolisch.tex12
-rw-r--r--buch/chapters/075-fourier/bessel.tex3
-rw-r--r--buch/chapters/110-elliptisch/uebungsaufgaben/1.tex2
3 files changed, 9 insertions, 8 deletions
diff --git a/buch/chapters/030-geometrie/hyperbolisch.tex b/buch/chapters/030-geometrie/hyperbolisch.tex
index 2938316..d2d0da2 100644
--- a/buch/chapters/030-geometrie/hyperbolisch.tex
+++ b/buch/chapters/030-geometrie/hyperbolisch.tex
@@ -163,9 +163,9 @@ In der speziellen Relativitätstheorie spielt das Minkowski-Skalarprodukt
eine besondere Rolle.
Die Koordinaten $x_0$ hat darin die Bedeutung der Zeit,
man weiss aus Experimenten wie dem Michelson-Morley-Experiment,
-dass die Grösse $\langle x,x\rangle$ ist eine Invariante ist.
+dass die Grösse $\langle x,x\rangle$ eine Invariante ist.
Die Transformationen mit der Matrix $A$ beschreiben also zulässige
-Koordinatentransformationenn, die Invariante erhalten.
+Koordinatentransformationen, die Invariante erhalten.
Für Transformationen, die zusätzlich die Zeitrichtung erhalten sollen,
muss $a_{00}=a_{11}=c>0$ verlangt werden.
@@ -174,7 +174,7 @@ muss $a_{00}=a_{11}=c>0$ verlangt werden.
Unter der Annahme $c>0$ lässt sich die Matrix vollständig
durch den Parameter $t=s/c$ beschreiben.
Dividiert man \eqref{buch:geometrie:hyperbolish:eqn:cs} durch $c^2$,
-kann $c$ durch $t$ ausdrücken:
+kann man $c$ durch $t$ ausdrücken:
\[
\frac{1}{c^2}
=
@@ -199,10 +199,10 @@ H_t
t&1
\end{pmatrix}.
\]
-Diese Formeln erinnern natürlich and die Formeln, mit denen
+Diese Formeln erinnern natürlich an die Formeln, mit denen
der hyperbolische Sinus und Kosinus aus dem hyperbolischen
-Tangens berechnet werden kann.
-Dieser Zusammenhang und soll im nächsten Abschnitt hergestellt
+Tangens berechnet werden können.
+Dieser Zusammenhang soll im nächsten Abschnitt hergestellt
werden.
%
diff --git a/buch/chapters/075-fourier/bessel.tex b/buch/chapters/075-fourier/bessel.tex
index 7e978f7..db7880b 100644
--- a/buch/chapters/075-fourier/bessel.tex
+++ b/buch/chapters/075-fourier/bessel.tex
@@ -454,7 +454,8 @@ Terme mit $\pm n$ können wegen
\[
\left.
\begin{aligned}
-J_{-n}(\xi) &= (-1)^n J_n(\xi)
+J_{-n}(\xi) &= (-1)^n J_n(\xi)
+\label{buch:fourier:eqn:symetrie}
\\
i^{-n}&=(-1)^n i^n
\end{aligned}
diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex
index af094c6..2d08e56 100644
--- a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex
+++ b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex
@@ -25,7 +25,7 @@ Auslenkung.
Formulieren Sie den Energieerhaltungssatz für die Gesamtenergie $E$
dieses Oszillators.
Leiten Sie daraus eine nichtlineare Differentialgleichung erster Ordnung
-for den anharmonischen Oszillator ab, die sie in der Form
+für den anharmonischen Oszillator ab, die sie in der Form
$\frac12m\dot{x}^2 = f(x)$ schreiben.
\item
Die Amplitude der Schwingung ist derjenige $x$-Wert, für den die