diff options
author | JODBaer <55744603+JODBaer@users.noreply.github.com> | 2022-07-26 20:08:26 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-07-26 20:08:26 +0200 |
commit | 1e1ca39b2d5707ebd8522acb3a47f1342d47560e (patch) | |
tree | 20892ab701165621f6d277e87fa5b95d3a09a933 /buch/papers/0f1/teil1.tex | |
parent | Ordner sturuktur angepasst (diff) | |
parent | fix references.bib (diff) | |
download | SeminarSpezielleFunktionen-1e1ca39b2d5707ebd8522acb3a47f1342d47560e.tar.gz SeminarSpezielleFunktionen-1e1ca39b2d5707ebd8522acb3a47f1342d47560e.zip |
Merge branch 'AndreasFMueller:master' into master
Diffstat (limited to '')
-rw-r--r-- | buch/papers/0f1/teil1.tex | 82 |
1 files changed, 52 insertions, 30 deletions
diff --git a/buch/papers/0f1/teil1.tex b/buch/papers/0f1/teil1.tex index 910e8bb..2a60737 100644 --- a/buch/papers/0f1/teil1.tex +++ b/buch/papers/0f1/teil1.tex @@ -6,16 +6,40 @@ \section{Mathematischer Hintergrund \label{0f1:section:mathHintergrund}} \rhead{Mathematischer Hintergrund} +Basierend auf den Herleitungen des vorhergehenden Kapitels \ref{buch:rekursion:section:hypergeometrische-funktion} +und dem Seminarbuch Numerik \cite{0f1:kettenbrueche}, werden im nachfolgenden Abschnitt nochmals die Resultate +beschrieben. + +\subsection{Hypergeometrische Funktion +\label{0f1:subsection:hypergeometrisch}} +Als Grundlage der umgesetzten Algorithmen dient die Hypergeometrische Funktion $\mathstrut_0F_1$. Diese ist eine Unterfunktion der allgemein definierten Funktion $\mathstrut_pF_q$. -\subsection{Hypergeometrische Funktion $\mathstrut_0F_1$ -\label{0f1:subsection:0f1}} -Wie in Kapitel \ref{buch:rekursion:section:hypergeometrische-funktion} beschrieben, -wird die Funktion $\mathstrut_0F_1$ folgendermassen definiert. \begin{definition} - \label{0f1:rekursion:hypergeometrisch:def} - Die hypergeometrische Funktion - $\mathstrut_0F_1$ ist definiert durch die Reihe - \[ + \label{0f1:math:qFp:def} + Die hypergeometrische Funktion + $\mathstrut_pF_q$ ist definiert durch die Reihe + \[ + \mathstrut_pF_q + \biggl( + \begin{matrix} + a_1,\dots,a_p\\ + b_1,\dots,b_q + \end{matrix} + ; + x + \biggr) + = + \mathstrut_pF_q(a_1,\dots,a_p;b_1,\dots,b_q;x) + = + \sum_{k=0}^\infty + \frac{(a_1)_k\cdots(a_p)_k}{(b_1)_k\cdots(b_q)_k}\frac{x^k}{k!}. + \] +\end{definition} + +Angewendet auf die Funktion $\mathstrut_pF_q$ ergibt sich für $\mathstrut_0F_1$: + +\begin{equation} + \label{0f1:math:0f1:eq} \mathstrut_0F_1 \biggl( \begin{matrix} @@ -29,26 +53,29 @@ wird die Funktion $\mathstrut_0F_1$ folgendermassen definiert. \mathstrut_0F_1(;b_1;x) = \sum_{k=0}^\infty - \frac{1}{(b_1)_k}\frac{x^k}{k!}. - \] -\end{definition} + \frac{x^k}{(b_1)_k \cdot k!}. +\end{equation} + + \subsection{Airy Funktion \label{0f1:subsection:airy}} -Wie in \ref{buch:differentialgleichungen:section:hypergeometrisch} dargestellt, ist die Airy-Differentialgleichung -folgendermassen definiert. +Die Airy-Funktion $Ai(x)$ und die verwandte Funktion $Bi(x)$ werden als Airy-Funktion bezeichnet. Sie werden zur Lösung verschiedener physikalischer Probleme benutzt, wie zum Beispiel zur Lösung der Schrödinger-Gleichung. \cite{0f1:wiki-airyFunktion} + \begin{definition} - y'' - xy = 0 - \label{0f1:airy:eq:differentialgleichung} + \label{0f1:airy:differentialgleichung:def} + Die Differentialgleichung + $y'' - xy = 0$ + heisst die {\em Airy-Differentialgleichung}. \cite{0f1:wiki-airyFunktion} \end{definition} -Daraus ergibt sich wie in Aufgabe~\ref{503} gefundenen Lösungen der -Airy-Differentialgleichung als hypergeometrische Funktionen. +Die Airy Funktion lässt sich auf verschiedene Arten darstellen. \cite{0f1:wiki-airyFunktion} +Als hypergeometrische Funktion berechnet, ergibt sich wie in Kapitel \ref{buch:differentialgleichungen:section:hypergeometrisch} hergeleitet, folgende Lösungen der Airy-Differentialgleichung zu den Anfangsbedingungen $A(0)=1$ und $A'(0)=0$, sowie $B(0)=0$ und $B'(0)=0$. - -\begin{align*} -y_1(x) +\begin{align} +\label{0f1:airy:hypergeometrisch:eq} +Ai(x) = \sum_{k=0}^\infty \frac{1}{(\frac23)_k} \frac{1}{k!}\biggl(\frac{x^3}{9}\biggr)^k @@ -57,7 +84,7 @@ y_1(x) \begin{matrix}\text{---}\\\frac23\end{matrix};\frac{x^3}{9} \biggr). \\ -y_2(x) +Bi(x) = \sum_{k=0}^\infty \frac{1}{(\frac43)_k} \frac{1}{k!}\biggl(\frac{x^3}{9}\biggr)^k @@ -67,14 +94,9 @@ x\cdot\mathstrut_0F_1\biggl( \frac{x^3}{9} \biggr). \qedhere -\end{align*} +\end{align} + +In diesem speziellem Fall wird die Airy Funktion $Ai(x)$ \eqref{0f1:airy:hypergeometrisch:eq} +benutzt, um die Stabilität der Algorithmen zu $\mathstrut_0F_1$ zu überprüfen. -\begin{figure} - \centering - \includegraphics{papers/0f1/images/airy.pdf} - \caption{Plot der Lösungen der Airy-Differentialgleichung $y''-xy=0$ - zu den Anfangsbedingungen $y(0)=1$ und $y'(0)=0$ in {\color{red}rot} - und $y(0)=0$ und $y'(0)=1$ in {\color{blue}blau}. - \label{0f1:airy:plot:vorgabe}} -\end{figure}
\ No newline at end of file |