diff options
author | Nao Pross <np@0hm.ch> | 2022-08-30 22:51:47 +0200 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2022-08-30 22:51:47 +0200 |
commit | f415440cc511ce82ce64f56acc12f83a1f8f277d (patch) | |
tree | 00b855742d3efb84740dfa075151a73ed216372a /buch/papers/kra/loesung.tex | |
parent | kugel: Minor corrections (diff) | |
parent | teil 3 \intertext aufgeräumt (diff) | |
download | SeminarSpezielleFunktionen-f415440cc511ce82ce64f56acc12f83a1f8f277d.tar.gz SeminarSpezielleFunktionen-f415440cc511ce82ce64f56acc12f83a1f8f277d.zip |
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to '')
-rw-r--r-- | buch/papers/kra/loesung.tex | 85 |
1 files changed, 73 insertions, 12 deletions
diff --git a/buch/papers/kra/loesung.tex b/buch/papers/kra/loesung.tex index 18ac853..604a5ec 100644 --- a/buch/papers/kra/loesung.tex +++ b/buch/papers/kra/loesung.tex @@ -15,13 +15,13 @@ Durch Ausschreiben des Differentialquotienten \begin{equation} \frac{dy}{dx} = fy^2 + gy + h \end{equation} -erkennt man, dass die DGL separierbar ist. Die Lösung findet man nun durch die Berechnung des Integrals +erkennt man, dass die Differentialgleichung separierbar ist. Die Lösung findet man nun durch die Berechnung des Integrals \begin{equation} \label{kra:equation:case1_int} \int \frac{dy}{fy^2 + gy + h} = \int dx. \end{equation} \subsubsection{Fall 2: Bekannte spezielle Lösung} -Kennt man eine spezielle Lösung $y_p$, so kann die riccatische DGL mit Hilfe einer Substitution auf eine lineare Gleichung reduziert werden. +Kennt man eine spezielle Lösung $y_p$, so kann die riccatische Differentialgleichung mit Hilfe einer Substitution auf eine lineare Gleichung reduziert werden. Wir wählen als Substitution \begin{equation} \label{kra:equation:substitution} z = \frac{1}{y - y_p}, @@ -33,7 +33,7 @@ durch Umstellen von \eqref{kra:equation:substitution} folgt \begin{equation} y' = y_p' - \frac{1}{z^2}z', \end{equation} -mit Einsetzten in die DGL \eqref{kra:equation:riccati} resultiert +mit Einsetzten in die Differentialgleichung \eqref{kra:equation:riccati} resultiert \begin{equation} y_p' - \frac{1}{z^2}z' = f(x)(y_p + \frac{1}{z}) + g(x)(y_p + \frac{1}{z})^2 + h(x) \end{equation} @@ -49,7 +49,9 @@ Diese kann nun mit den Methoden zur Lösung von linearen Differentialgleichungen Durch die Rücksubstitution \eqref{kra:equation:backsubstitution} erhält man dann die Lösung von \eqref{kra:equation:riccati}. \subsection{Matrix-Riccati-Differentialgleichung} \label{kra:loesung:riccati} -Im Folgenden wollen wir uns anschauen wie die Matrix-Riccati-DGL entsteht und wie sie gelöst werden kann. +Im Folgenden wollen wir uns anschauen wie die Matrix-Riccati-Differentialgleichung entsteht und wie sie gelöst werden kann. + +\subsubsection{Entstehung} Der Ausgangspunkt bildet die Matrix-Differentialgleichung \begin{equation} \label{kra:equation:matrix-dgl} @@ -63,19 +65,77 @@ Der Ausgangspunkt bildet die Matrix-Differentialgleichung A & B \\ C & D \end{pmatrix} - }_{\displaystyle{H}}, + }_{\displaystyle{H}} + \begin{pmatrix} + X(t) \\ + Y(t) + \end{pmatrix} \end{equation} -mit den allgemeinen quadratischen Matrizen $A, B, C$ und $D$ welche zusammen die sogennante Hamilonsche-Matrix bilden. -Betrachten wir das Verhältniss von $Y$ zu $X$ +mit den allgemeinen quadratischen Matrizen $A, B, C$ und $D$, welche in der sogenannten Hamiltonschen-Matrix $H$ zusammengefasst werden können. +Wir führen eine neue Grösse \[ - P(t) = Y(t)X^{-1} + U(t) = Y(t)X(t)^{-1} \] -und deren Ableitung $\dot{P}(t)$, so erhalten wir die Riccati-Matrix-DGL +ein, für dessen Ableitung $\dt U(t)$ wir mit \[ - \dot{P}(t) = C + DU - UA - UBU. + \dot{X}(t) = AX(t) + BY(t) \quad \text{und} \quad \dot{Y}(t) = CX(t) + DY(t) \] +folgendes Ergebnis erhalten +\begin{equation} + \label{kra:equation:feder-masse-riccati-matrix} + \begin{split} + \dt U(t) &= \dot{Y}(t) X(t)^{-1} + Y(t) \dt X(t)^{-1} \\ + &= (CX(t) + DY(t)) X(t)^{-1} - Y(t) (X(t)^{-1} \dot{X}(t) X(t)^{-1}) \\ + &= C\underbrace{X(t)X(t)^{-1}}_\text{$I$} + D\underbrace{Y(t)X(t)^{-1}}_\text{$U(t)$} - Y(t)(X(t)^{-1} (AX(t) + BY(t)) X(t)^{-1}) \\ + &= C + DU(t) - \underbrace{Y(t)X(t)^{-1}}_\text{$U(t)$}(A\underbrace{X(t)X(t)^{-1}}_\text{$I$} + B\underbrace{Y(t)X(t)^{-1}}_\text{$U(t)$}) \\ + &= C + DU(t) - U(t)A - U(t)BU(t). + \end{split} +\end{equation} +\begin{satz} + \label{kra:satz:riccati-matrix-dgl} + Die Ableitung $\dt U(t) = \dt (Y(t)X(t)^{-1})$ ist eine Matrix-Riccati-Differentialgleichung. +\end{satz} -Die Lösung erhalten wir dann mit +\subsubsection{Lösung} +Sei +\[ + V(t) + = + \begin{pmatrix} + X(t) \\ + Y(t) + \end{pmatrix}, + \quad + \dot{V}(t) = HV(t) +\] +eine Matrix-Differentialgleichung 1. Ordnung, dann ist +\[ + V(t) = e^{H(t)} V(0) +\] +eine Lösung. +Die Berechnung des Matrixexpontentials $e^{H(t)}$ kann mittels Diagonalisierung +\[ + H = Q \Lambda Q^{-1} +\] +effizient berechnet werden. +Es folgt dann, dass +\[ + e^{Ht} + = + Q + e^{\Lambda t} + Q^{-1} + = + Q + \begin{pmatrix} + e^{\lambda_1 t} & 0 & \dots & 0 \\ + 0 & e^{\lambda_2 t} & \ddots & \vdots \\ + \vdots & \ddots & \ddots & 0 \\ + 0 & \dots & 0 & e^{\lambda_n t} + \end{pmatrix} + Q^{-1} +\] +ist. Die Lösung der Matrix-Riccati-Differentialgleichung erhalten wir analog mit \begin{equation} \label{kra:matrixriccati-solution} \begin{pmatrix} @@ -108,4 +168,5 @@ Die Lösung erhalten wir dann mit \end{pmatrix} ^{-1} \end{equation} -wobei $\Phi(t_0, t) = e^{H(t - t_0)}$ die sogenannte Zustandsübergangsmatrix von \eqref{kra:equation:matrix-dgl} ist \cite{kra:kalmanisae}. +wobei $\Phi(t_0, t) = e^{H(t - t_0)}$ die sogenannte Zustandsübergangsmatrix von \eqref{kra:equation:matrix-dgl} ist, +welche die Zeitentwicklung der einzelnen Lösungen beschreibt \cite{kra:kalmanisae}. |