diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2022-07-28 21:02:29 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-07-28 21:02:29 +0200 |
commit | 6b22031306bb1e1dfa5fad44f8c8ac5eff6c5a4c (patch) | |
tree | 9a32e4d281027d3f434fd7730a280a89622976bb /buch/papers/kreismembran/teil3.tex | |
parent | typo korrigiert (diff) | |
parent | numerik continues (diff) | |
download | SeminarSpezielleFunktionen-6b22031306bb1e1dfa5fad44f8c8ac5eff6c5a4c.tar.gz SeminarSpezielleFunktionen-6b22031306bb1e1dfa5fad44f8c8ac5eff6c5a4c.zip |
Merge pull request #36 from HeadAndToes/master
Fortführung und Korrekturen
Diffstat (limited to '')
-rw-r--r-- | buch/papers/kreismembran/teil3.tex | 42 |
1 files changed, 24 insertions, 18 deletions
diff --git a/buch/papers/kreismembran/teil3.tex b/buch/papers/kreismembran/teil3.tex index bef8b5f..7d5648a 100644 --- a/buch/papers/kreismembran/teil3.tex +++ b/buch/papers/kreismembran/teil3.tex @@ -6,7 +6,10 @@ \section{Lösungsmethode 2: Transformationsmethode \label{kreismembran:section:teil3}} \rhead{Lösungsmethode 2: Transformationsmethode} -Die Hankel-Transformation wird dann zur Lösung der Differentialgleichung verwendet. Es müssen jedoch einige Änderungen an dem Problem vorgenommen werden, damit es mit den Annahmen übereinstimmt, die für die Verwendung der Hankel-Transformation erforderlich sind. Das heisst, dass die Funktion u nur von der Entfernung zum Ausgangspunkt abhängt. Wir führen also das Konzept einer unendlichen und achsensymmetrischen Membran ein: +Die Hankel-Transformation wird dann zur Lösung der Differentialgleichung verwendet. Es müssen jedoch einige Änderungen an dem Problem vorgenommen werden, damit es mit den Annahmen übereinstimmt, die für die Verwendung der Hankel-Transformation erforderlich sind. Das heisst, dass die Funktion $u$ nur von der Entfernung zum Ausgangspunkt abhängt. + +\subsubsection{Transformation und Reduktion auf eine algebraische Gleichung\label{subsub:transf_reduktion}} +Führt man also das Konzept einer unendlichen und achsensymmetrischen Membran ein: \begin{equation*} \frac{\partial^2u}{\partial t^2} = @@ -18,16 +21,15 @@ Die Hankel-Transformation wird dann zur Lösung der Differentialgleichung verwen \end{equation*} \begin{align} - u(r,0)=f(r), \quad \frac{\partial}{\partial t} u(r,0) = g(r), \quad \text{für} \quad 0<r<\infty + u(r,0)=f(r), \quad u_t(r,0) = g(r), \quad \text{für} \quad 0<r<\infty \label{eq:PDE_inf_membane_RB} \end{align} Mit Anwendung der Hankel-Transformation nullter Ordnung in Abhängigkeit von $r$ auf die Gleichungen \eqref{eq:PDE_inf_membane} und \eqref{eq:PDE_inf_membane_RB}: \begin{align} - \tilde{u}(\kappa,t)=\int_{0}^{\infty}r J_0(\kappa r)u(r,t) dr, + \tilde{u}(\kappa,t)=\int_{0}^{\infty}r J_0(\kappa r)u(r,t) \; dr, \end{align} - bekommt man: \begin{equation*} @@ -36,43 +38,47 @@ bekommt man: \begin{equation*} \tilde{u}(\kappa,0)=\tilde{f}(\kappa), \quad - \frac{\partial}{\partial t}\tilde{u}(\kappa,0)=\tilde{g}(\kappa). + \tilde{u}_t(\kappa,0)=\tilde{g}(\kappa). \end{equation*} - -Die allgemeine Lösung für diese Transformation lautet, wie schon gesehen, wie folgt +Die allgemeine Lösung für diese Transformation lautet, wie in Gleighung \eqref{eq:cos_sin_überlagerung} gesehen, wie folgt \begin{equation*} \tilde{u}(\kappa,t)=\tilde{f}(\kappa)\cos(c\kappa t) + \frac{1}{c\kappa}\tilde{g}(\kappa)\sin(c\kappa t). \end{equation*} - Wendet man an nun die inverse Hankel-Transformation an, so erhält man die formale Lösung \begin{align} - u(r,t)=\int_{0}^{\infty}\kappa\tilde{f}(\kappa)\cos(c\kappa t) J_0(\kappa r) d\kappa +\frac{1}{c}\int_{0}^{\infty}\tilde{g}(\kappa)\sin(c\kappa t)J_0(\kappa r) d\kappa. + u(r,t)=\int_{0}^{\infty}\kappa\tilde{f}(\kappa)\cos(c\kappa t) J_0(\kappa r) \; d\kappa +\frac{1}{c}\int_{0}^{\infty}\tilde{g}(\kappa)\sin(c\kappa t)J_0(\kappa r) \; d\kappa. \label{eq:formale_lösung} \end{align} -Es wird daher davon ausgegangen, dass sich die Membran verformt und zum Zeitpunkt $t=0$ freigegeben wird +\subsubsection{Erfüllung der Anfangsbedingungen\label{subsub:erfüllung_AB}} +Es wird in Folgenden davon ausgegangen, dass sich die Membran verformt und zum Zeitpunkt $t=0$ freigegeben wird \begin{equation*} - u(r,0)=f(r)=Aa(r^2 + a^2)^{-\frac{1}{2}}, \quad \frac{d}{dt}(r,0)=g(r)=0 + u(r,0)=f(r)=Aa(r^2 + a^2)^{-\frac{1}{2}}, \quad u_t(r,0)=g(r)=0 \end{equation*} - so dass $\tilde{g}(\kappa)\equiv 0$ und - \begin{equation*} - \tilde{f}(\kappa)=Aa\int_{0}^{\infty}r(a^2 + r^2)^{-\frac{1}{2}} J_0 (\kappa r) dr=\frac{Aa}{\kappa}e^{-a\kappa} + \tilde{f}(\kappa)=Aa\int_{0}^{\infty}r(a^2 + r^2)^{-\frac{1}{2}} J_0 (\kappa r) \; dr=\frac{Aa}{\kappa}e^{-a\kappa} \end{equation*} - Die formale Lösung \eqref{eq:formale_lösung} lautet also \begin{align*} - u(r,t)&=Aa\int_{0}^{\infty}e^{-a\kappa} J_0(\kappa r)\cos(c\kappa t)dk=AaRe\int_{0}^{\infty}e^{-\kappa(a+ict)} J_0(\kappa r)dk\\ + u(r,t)&=Aa\int_{0}^{\infty}e^{-a\kappa} J_0(\kappa r)\cos(c\kappa t) \; dk=AaRe\int_{0}^{\infty}e^{-\kappa(a+ict)} J_0(\kappa r) \; dk\\ &=AaRe\left\{r^2+\left(a+ict\right)^2\right\}^{-\frac{1}{2}} \end{align*} +Nimmt man jedoch die allgemeine Lösung mit Summationen, + +\begin{align} + u(r, t) = \displaystyle\sum_{m=1}^{\infty} J_0 (k_{m}r)[a_{m}\cos(c \kappa_{m} t)+b_{m}\sin(c \kappa_{m} t)] + \label{eq:lösung_unendliche_generelle} +\end{align} +kann man die Lösungsmethoden 1 und 2 vergleichen. -\subsection{Vergleich der Lösungen +\subsection{Vergleich der Analytischen Lösungen \label{kreismembran:vergleich}} -Hier kommt noch der Vergleich der Lösungen ;) +Bei der Analyse der Gleichungen \eqref{eq:lösung_endliche_generelle} und \eqref{eq:lösung_unendliche_generelle} fällt sofort auf, dass die Gleichung \eqref{eq:lösung_unendliche_generelle} nicht mehr von $m$ und $n$ abhängt, sondern nur noch von $n$ \cite{nishanth_p_vibrations_2018}. Das macht Sinn, denn $n$ beschreibt die Anzahl der Knotenlinien, und in einer unendlichen Membran gibt es keine. Tatsächlich werden $a_{m0}$, $b_{m0}$ und $\kappa_{m0}$ in $a_m$, $b_m$ bzw. $\kappa_m$ umbenannt. Die beiden Termen $\cos(n\varphi)$ und $\sin(n\varphi)$ verschwinden ebenfalls, da für $n=0$ der $\cos(n\varphi)$ gleich 1 und der $\sin(n \varphi)$ gleich 0 ist. +Die Funktion hängt also nicht mehr von der Besselfunktionen $n$-ter Ordnung ab, sondern nur von der $0$-ter Ordnung. |