aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/kugel/images/spherecurve.m
diff options
context:
space:
mode:
authorJODBaer <55744603+JODBaer@users.noreply.github.com>2022-06-13 09:18:25 +0200
committerGitHub <noreply@github.com>2022-06-13 09:18:25 +0200
commit3010b2b87e56a8e2fbc2476b9971d9ef886f17a0 (patch)
tree9de92825e4293741d7d617d40e661fb5863bb8b9 /buch/papers/kugel/images/spherecurve.m
parentMerge branch 'AndreasFMueller:master' into master (diff)
parentflow (diff)
downloadSeminarSpezielleFunktionen-3010b2b87e56a8e2fbc2476b9971d9ef886f17a0.tar.gz
SeminarSpezielleFunktionen-3010b2b87e56a8e2fbc2476b9971d9ef886f17a0.zip
Merge branch 'AndreasFMueller:master' into master
Diffstat (limited to '')
-rw-r--r--buch/papers/kugel/images/spherecurve.m160
-rw-r--r--buch/papers/kugel/images/spherecurve.maxima13
2 files changed, 173 insertions, 0 deletions
diff --git a/buch/papers/kugel/images/spherecurve.m b/buch/papers/kugel/images/spherecurve.m
new file mode 100644
index 0000000..99d5c9a
--- /dev/null
+++ b/buch/papers/kugel/images/spherecurve.m
@@ -0,0 +1,160 @@
+#
+# spherecurve.m
+#
+# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+global a;
+a = 5;
+global A;
+A = 10;
+
+phisteps = 400;
+hphi = 2 * pi / phisteps;
+thetasteps = 200;
+htheta = pi / thetasteps;
+
+function retval = f(z)
+ global a;
+ global A;
+ retval = A * exp(a * (z^2 - 1));
+endfunction
+
+function retval = g(z)
+ global a;
+ retval = -f(z) * 2 * a * (2 * a * z^4 + (3 - 2*a) * z^2 - 1);
+ # 2
+ # - a 2 4 2 2 a z
+ #(%o6) - %e (4 a z + (6 a - 4 a ) z - 2 a) %e
+endfunction
+
+phi = (1 + sqrt(5)) / 2;
+
+global axes;
+axes = [
+ 0, 0, 1, -1, phi, -phi;
+ 1, -1, phi, phi, 0, 0;
+ phi, phi, 0, 0, 1, 1;
+];
+axes = axes / (sqrt(phi^2+1));
+
+function retval = kugel(theta, phi)
+ retval = [
+ cos(phi) * sin(theta);
+ sin(phi) * sin(theta);
+ cos(theta)
+ ];
+endfunction
+
+function retval = F(v)
+ global axes;
+ s = 0;
+ for i = (1:6)
+ z = axes(:,i)' * v;
+ s = s + f(z);
+ endfor
+ retval = s / 6;
+endfunction
+
+function retval = F2(theta, phi)
+ v = kugel(theta, phi);
+ retval = F(v);
+endfunction
+
+function retval = G(v)
+ global axes;
+ s = 0;
+ for i = (1:6)
+ s = s + g(axes(:,i)' * v);
+ endfor
+ retval = s / 6;
+endfunction
+
+function retval = G2(theta, phi)
+ v = kugel(theta, phi);
+ retval = G(v);
+endfunction
+
+function retval = cnormalize(u)
+ utop = 11;
+ ubottom = -30;
+ retval = (u - ubottom) / (utop - ubottom);
+ if (retval > 1)
+ retval = 1;
+ endif
+ if (retval < 0)
+ retval = 0;
+ endif
+endfunction
+
+global umin;
+umin = 0;
+global umax;
+umax = 0;
+
+function color = farbe(v)
+ global umin;
+ global umax;
+ u = G(v);
+ if (u < umin)
+ umin = u;
+ endif
+ if (u > umax)
+ umax = u;
+ endif
+ u = cnormalize(u);
+ color = [ u, 0.5, 1-u ];
+ color = color/max(color);
+endfunction
+
+function dreieck(fn, v0, v1, v2)
+ fprintf(fn, " mesh {\n");
+ c = (v0 + v1 + v2) / 3;
+ c = c / norm(c);
+ color = farbe(c);
+ v0 = v0 * (1 + F(v0));
+ v1 = v1 * (1 + F(v1));
+ v2 = v2 * (1 + F(v2));
+ fprintf(fn, "\ttriangle {\n");
+ fprintf(fn, "\t <%.6f,%.6f,%.6f>,\n", v0(1,1), v0(3,1), v0(2,1));
+ fprintf(fn, "\t <%.6f,%.6f,%.6f>,\n", v1(1,1), v1(3,1), v1(2,1));
+ fprintf(fn, "\t <%.6f,%.6f,%.6f>\n", v2(1,1), v2(3,1), v2(2,1));
+ fprintf(fn, "\t}\n");
+ fprintf(fn, "\tpigment { color rgb<%.4f,%.4f,%.4f> }\n",
+ color(1,1), color(1,2), color(1,3));
+ fprintf(fn, "\tfinish { metallic specular 0.5 }\n");
+ fprintf(fn, " }\n");
+endfunction
+
+fn = fopen("spherecurve2.inc", "w");
+
+ for i = (1:phisteps)
+ # Polkappe nord
+ v0 = [ 0; 0; 1 ];
+ v1 = kugel(htheta, (i-1) * hphi);
+ v2 = kugel(htheta, i * hphi);
+ fprintf(fn, " // i = %d\n", i);
+ dreieck(fn, v0, v1, v2);
+
+ # Polkappe sued
+ v0 = [ 0; 0; -1 ];
+ v1 = kugel(pi-htheta, (i-1) * hphi);
+ v2 = kugel(pi-htheta, i * hphi);
+ dreieck(fn, v0, v1, v2);
+ endfor
+
+ for j = (1:thetasteps-2)
+ for i = (1:phisteps)
+ v0 = kugel( j * htheta, (i-1) * hphi);
+ v1 = kugel((j+1) * htheta, (i-1) * hphi);
+ v2 = kugel( j * htheta, i * hphi);
+ v3 = kugel((j+1) * htheta, i * hphi);
+ fprintf(fn, " // i = %d, j = %d\n", i, j);
+ dreieck(fn, v0, v1, v2);
+ dreieck(fn, v1, v2, v3);
+ endfor
+ endfor
+
+fclose(fn);
+
+umin
+umax
diff --git a/buch/papers/kugel/images/spherecurve.maxima b/buch/papers/kugel/images/spherecurve.maxima
new file mode 100644
index 0000000..1e9077c
--- /dev/null
+++ b/buch/papers/kugel/images/spherecurve.maxima
@@ -0,0 +1,13 @@
+/*
+ * spherecurv.maxima
+ *
+ * (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+ */
+f: exp(-a * sin(theta)^2);
+
+g: ratsimp(diff(sin(theta) * diff(f, theta), theta)/sin(theta));
+g: subst(z, cos(theta), g);
+g: subst(sqrt(1-z^2), sin(theta), g);
+ratsimp(g);
+
+f: ratsimp(subst(sqrt(1-z^2), sin(theta), f));