diff options
author | Patrik Müller <patrik.mueller@ost.ch> | 2022-06-02 15:23:21 +0200 |
---|---|---|
committer | Patrik Müller <patrik.mueller@ost.ch> | 2022-06-02 15:23:21 +0200 |
commit | 85e7d741f78ca0874b42db5cfbd18f4c28a933b3 (patch) | |
tree | 5cbcb6ad9e598ab76af4ed9e092fc0aa5a05336c /buch/papers/laguerre/presentation | |
parent | Add relative error plots with shift (diff) | |
download | SeminarSpezielleFunktionen-85e7d741f78ca0874b42db5cfbd18f4c28a933b3.tar.gz SeminarSpezielleFunktionen-85e7d741f78ca0874b42db5cfbd18f4c28a933b3.zip |
Add presentation
Diffstat (limited to '')
5 files changed, 515 insertions, 0 deletions
diff --git a/buch/papers/laguerre/presentation/presentation.tex b/buch/papers/laguerre/presentation/presentation.tex new file mode 100644 index 0000000..f49cf1e --- /dev/null +++ b/buch/papers/laguerre/presentation/presentation.tex @@ -0,0 +1,134 @@ +\documentclass[ngerman, aspectratio=169, xcolor={rgb}]{beamer} + +% style +\mode<presentation>{ + \usetheme{Frankfurt} +} +%packages +\usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} +\usepackage[ngerman]{babel} +\usepackage{graphicx} +\usepackage{array} + +\newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}} +\usepackage{ragged2e} + +\usepackage{bm} % bold math +\usepackage{amsfonts} +\usepackage{amssymb} +\usepackage{mathtools} +\usepackage{amsmath} +\usepackage{multirow} % multi row in tables +\usepackage{booktabs} %toprule midrule bottomrue in tables +\usepackage{scrextend} +\usepackage{textgreek} +\usepackage[rgb]{xcolor} + +\usepackage{ marvosym } % \Lightning + +\usepackage{multimedia} % embedded videos + +\usepackage{tikz} +\usepackage{pgf} +\usepackage{pgfplots} + +\usepackage{algorithmic} + +%citations +\usepackage[style=verbose,backend=biber]{biblatex} +\addbibresource{references.bib} + + +%math font +\usefonttheme[onlymath]{serif} + +%Beamer Template modifications +%\definecolor{mainColor}{HTML}{0065A3} % HSR blue +\definecolor{mainColor}{HTML}{D72864} % OST pink +\definecolor{invColor}{HTML}{28d79b} % OST pink +\definecolor{dgreen}{HTML}{38ad36} % Dark green + +%\definecolor{mainColor}{HTML}{000000} % HSR blue +\setbeamercolor{palette primary}{bg=white,fg=mainColor} +\setbeamercolor{palette secondary}{bg=orange,fg=mainColor} +\setbeamercolor{palette tertiary}{bg=yellow,fg=red} +\setbeamercolor{palette quaternary}{bg=mainColor,fg=white} %bg = Top bar, fg = active top bar topic +\setbeamercolor{structure}{fg=black} % itemize, enumerate, etc (bullet points) +\setbeamercolor{section in toc}{fg=black} % TOC sections +\setbeamertemplate{section in toc}[sections numbered] +\setbeamertemplate{subsection in toc}{% + \hspace{1.2em}{$\bullet$}~\inserttocsubsection\par} + +\setbeamertemplate{itemize items}[circle] +\setbeamertemplate{description item}[circle] +\setbeamertemplate{title page}[default][colsep=-4bp,rounded=true] +\beamertemplatenavigationsymbolsempty + +\setbeamercolor{footline}{fg=gray} +\setbeamertemplate{footline}{% + \hfill\usebeamertemplate***{navigation symbols} + \hspace{0.5cm} + \insertframenumber{}\hspace{0.2cm}\vspace{0.2cm} +} + +\usepackage{caption} +\captionsetup{labelformat=empty} + +%Title Page +\title{Laguerre-Polynome} +\subtitle{Anwendung: Approximation der Gamma-Funktion} +\author{Patrik Müller} +% \institute{OST Ostschweizer Fachhochschule} +% \institute{\includegraphics[scale=0.3]{../img/ost_logo.png}} +\date{\today} + +\input{../packages.tex} + +\newcommand*{\QED}{\hfill\ensuremath{\blacksquare}}% + +\newcommand*{\HL}{\textcolor{mainColor}} +\newcommand*{\RD}{\textcolor{red}} +\newcommand*{\BL}{\textcolor{blue}} +\newcommand*{\GN}{\textcolor{dgreen}} + +\definecolor{darkgreen}{rgb}{0,0.6,0} + + +\makeatletter +\newcount\my@repeat@count +\newcommand{\myrepeat}[2]{% + \begingroup + \my@repeat@count=\z@ + \@whilenum\my@repeat@count<#1\do{#2\advance\my@repeat@count\@ne}% + \endgroup +} +\makeatother + +\usetikzlibrary{automata,arrows,positioning,calc,shapes.geometric, fadings} + +\begin{document} + +\begin{frame} + \titlepage +\end{frame} + +\begin{frame}{Inhaltsverzeichnis} + \tableofcontents +\end{frame} + +\input{sections/laguerre} + +\input{sections/gaussquad} + +\input{sections/gamma} + +\input{sections/gamma_approx} + +\appendix +\begin{frame} + \centering + \Large + \textbf{Vielen Dank für die Aufmerksamkeit} +\end{frame} + +\end{document} diff --git a/buch/papers/laguerre/presentation/sections/gamma.tex b/buch/papers/laguerre/presentation/sections/gamma.tex new file mode 100644 index 0000000..37f4a0b --- /dev/null +++ b/buch/papers/laguerre/presentation/sections/gamma.tex @@ -0,0 +1,50 @@ +\section{Gamma-Funktion} + +\begin{frame}{Gamma-Funktion} +\begin{columns} + +\begin{column}{0.48\textwidth} +\begin{figure}[h] +\centering +% \scalebox{0.51}{\input{../images/gammaplot.pdf}} +\includegraphics[width=1\textwidth]{../images/gammaplot.pdf} +% \caption{Gamma-Funktion} +\end{figure} +\end{column} + +\begin{column}{0.52\textwidth} +Verallgemeinerung der Fakultät +\begin{align*} +\Gamma(n) = (n-1)! +\end{align*} + +Integralformel +\begin{align*} +\Gamma(z) += +\int_0^\infty x^{z-1} e^{-x} \, dx +,\quad +\operatorname{Re} z > 0 +\end{align*} + +Funktionalgleichung +\begin{align*} +z \Gamma(z) += +\Gamma(z + 1) +\end{align*} + +Reflektionsformel +\begin{align*} +\Gamma(z) \Gamma(1 - z) += +\frac{\pi}{\sin \pi z} +, \quad +\text{für } +z \notin \mathbb{Z} +\end{align*} + +\end{column} +\end{columns} + +\end{frame}
\ No newline at end of file diff --git a/buch/papers/laguerre/presentation/sections/gamma_approx.tex b/buch/papers/laguerre/presentation/sections/gamma_approx.tex new file mode 100644 index 0000000..f5f889e --- /dev/null +++ b/buch/papers/laguerre/presentation/sections/gamma_approx.tex @@ -0,0 +1,176 @@ +\section{Approximieren der Gamma-Funktion} + +\begin{frame}{Anwenden der Gauss-Laguerre-Quadratur auf $\Gamma(z)$} + +\begin{align*} +\Gamma(z) + & = +\int_0^\infty x^{z-1} e^{-x} \, dx +\approx +\sum_{i=1}^{n} f(x_i) A_i += +\sum_{i=1}^{n} x^{z-1} A_i +\\\\ + & \text{wobei } +A_i = \frac{x_i}{(n+1)^2 \left[ L_{n+1}(x_i) \right]^2} +\text{ und $x_i$ die Nullstellen von $L_n(x)$} +\end{align*} + +\end{frame} + +\begin{frame}{Fehlerabschätzung} +\begin{align*} +R_n(\xi) + & = +\frac{(n!)^2}{(2n)!} f^{(2n)}(\xi) +\\ + & = +(z - 2n)_{2n} \frac{(n!)^2}{(2n)!} \xi^{z - 2n - 1} +,\quad +0 < \xi < \infty +\end{align*} + +% \textbf{Probleme:} +\begin{itemize} +\item Funktion ist unbeschränkt +\item Maximum von $R_n$ gibt oberes Limit des Fehlers an +\uncover<2->{\item[$\Rightarrow$] Schwierig ein Maximum von $R_n(\xi)$ zu finden} +\end{itemize} +\end{frame} + +\begin{frame}{Einfacher Ansatz} + +\begin{figure}[h] +\centering +\scalebox{0.91}{\input{../images/rel_error_simple.pgf}} +\caption{Relativer Fehler des einfachen Ansatzes für verschiedene reele Werte +von $z$ und Grade $n$ der Laguerre-Polynome} +\end{figure} + +\end{frame} + +\begin{frame}{Wieso sind die Resultate so schlecht?} + +\textbf{Beobachtungen} +\begin{itemize} +\item Wenn $z \in \mathbb{Z}$ relativer Fehler $\rightarrow 0$ +\item Gewisse Periodizität zu erkennen +\item Für grosse und kleine $z$ ergibt sich ein schlechter relativer Fehler +\item Es gibt Intervalle $[a,a+1]$ mit minimalem relativem Fehler +\item $a$ ist abhängig von $n$ +\end{itemize} + +\uncover<2->{ +\textbf{Ursache?} +\begin{itemize} +\item Vermutung: Integrand ist problematisch +} +\uncover<3->{ +\item[$\Rightarrow$] Analysieren des Integranden +} +\end{itemize} +\end{frame} + +\begin{frame}{$f(x) = x^z$} +\begin{figure}[h] +\centering +\scalebox{0.91}{\input{../images/integrands.pgf}} +% \caption{Integrand $x^z$ mit unterschiedlichen Werten für $z$} +\end{figure} +\end{frame} + +\begin{frame}{Integrand $x^z e^{-x}$} +\begin{figure}[h] +\centering +\scalebox{0.91}{\input{../images/integrands_exp.pgf}} +% \caption{Integrand $x^z$ mit unterschiedlichen Werten für $z$} +\end{figure} +\end{frame} + +\begin{frame}{Neuer Ansatz?} + +\textbf{Vermutung} +\begin{itemize} +\item Es gibt Intervalle $[a(n), a(n+1)]$ in denen der relative Fehler minimal +ist +\item $a(n) > 0$ +\end{itemize} + +\uncover<2->{ +\textbf{Idee} +\begin{itemize} +\item[$\Rightarrow$] Berechnen von $\Gamma(z)$ im geeigneten Intervall und dann +mit Funktionalgleichung zurückverschieben +\end{itemize} +} + +\uncover<3->{ +\textbf{Wie finden wir $\boldsymbol{a(n)}$?} +\begin{itemize} +\item Minimieren des Fehlerterms mit zusätzlichem Verschiebungsterm +} +\uncover<4->{$\Rightarrow$ Schwierig das Maximum des Fehlerterms zu bestimmen} +\uncover<5->{\item Emprisch $a(n)$ bestimmen} +\uncover<6->{$\Rightarrow$ Sinnvoll, +da Gauss-Quadratur nur für kleine $n$ praktischen Nutzen hat} +\end{itemize} +\end{frame} + +\begin{frame}{Verschiebungsterm} +\begin{align*} +\Gamma(z) +\approx +\frac{1}{(z-m)_m} \sum_{i=1}^{n} x_i^{z + m - 1} A_i +\end{align*} + +\begin{figure}[h] +\centering +\includegraphics[width=0.5\textwidth]{../images/targets.pdf} +\caption{Verschiebungsterm $m$ in Abhängigkeit von $z$ und $n$} +\end{figure} +\end{frame} + +\begin{frame}{Schätzen von $m^*$} +\begin{columns} +\begin{column}{0.6\textwidth} +\begin{figure} +\centering +\vspace{-24pt} +\scalebox{0.7}{\input{../images/estimate.pgf}} +% \caption{Integrand $x^z$ mit unterschiedlichen Werten für $z$} +\end{figure} +\end{column} +\begin{column}{0.39\textwidth} +\begin{align*} +m^* += +\lceil \hat{m} - \operatorname{Re}z \rceil +\end{align*} +\end{column} +\end{columns} + +\end{frame} + +\begin{frame}{} +\begin{figure}[h] +\centering +\scalebox{0.6}{\input{../images/rel_error_shifted.pgf}} +\caption{Relativer Fehler mit $n=8$, unterschiedlichen Verschiebungstermen $m$ und $z\in(0, 1)$} +\end{figure} +\end{frame} + +\begin{frame}{} +\begin{figure}[h] +\centering +\scalebox{0.6}{\input{../images/rel_error_range.pgf}} +\caption{Relativer Fehler mit $n=8$, Verschiebungsterm $m^*$ und $z\in(-5, 5)$} +\end{figure} +\end{frame} + +\begin{frame}{Vergleich mit Lanczos-Methode} +Maximaler relativer Fehler für $n=6$ +\begin{itemize} + \item Lanczos-Methode $< 10^{-12}$ + \item Unsere Methode $\approx 10^{-6}$ +\end{itemize} +\end{frame}
\ No newline at end of file diff --git a/buch/papers/laguerre/presentation/sections/gaussquad.tex b/buch/papers/laguerre/presentation/sections/gaussquad.tex new file mode 100644 index 0000000..4d973b8 --- /dev/null +++ b/buch/papers/laguerre/presentation/sections/gaussquad.tex @@ -0,0 +1,67 @@ +\section{Gauss-Quadratur} + +\begin{frame}{Gauss-Quadratur} +\textbf{Idee} +\begin{itemize}[<+->] +\item Polynome können viele Funktionen approximieren +\item Wenn Verfahren gut für Polynome funktioniert, +sollte es auch für andere Funktionen funktionieren +\item Integrieren eines Interpolationspolynom +\item Interpolationspolynom ist durch Funktionswerte $f(x_i)$ bestimmt +$\Rightarrow$ Integral kann durch Funktionswerte berechnet werden +\item Evaluation der Funktionswerte an geeigneten Stellen +\end{itemize} +\end{frame} + +\begin{frame}{Gauss-Quadratur} +\begin{align*} +\int_{-1}^{1} f(x) \, dx +\approx +\sum_{i=1}^n f(x_i) A_i +\end{align*} + +\begin{itemize}[<+->] +\item Exakt für Polynome mit Grad $2n-1$ +\item Interpolationspolynome müssen orthogonal sein +\item Stützstellen $x_i$ sind Nullstellen des Polynoms +\item Fehler: +\begin{align*} +E += +\frac{f^{(2n)}(\xi)}{(2n)!} \int_{-1}^{1} l(x)^2 \, dx +,\quad +\text{wobei } +l(x) = \prod_{i=1}^n (x-x_i) +\end{align*} +\end{itemize} +\end{frame} + +\begin{frame}{Gauss-Laguerre-Quadratur} +\begin{itemize}[<+->] +\item Erweiterung des Integrationsintervall von $[-1, 1]$ auf $(a, b)$ +\item Hinzufügen einer Gewichtsfunktion +\item Bei uneigentlichen Integralen muss Gewichtsfunktion schneller als jedes +Integrationspolynom gegen $0$ gehen +\item[$\Rightarrow$] Für Laguerre-Polynome haben wir den Definitionsbereich +$(0, \infty)$ und die Gewichtsfunktion $w(x) = e^{-x}$ +\begin{align*} +\int_0^\infty & f(x) e^{-x} \, dx +\approx +\sum_{i=1}^n f(x_i) A_i +\\ + & \text{wobei } +A_i = \frac{x_i}{(n+1)^2 \left[ L_{n+1}(x_i) \right]^2} +\text{ und $x_i$ die Nullstellen von $L_n(x)$} +\end{align*} +\end{itemize} +\end{frame} + +\begin{frame}{Fehler der Gauss-Laguerre-Quadratur} +\begin{align*} +R_n += +\frac{(n!)^2}{(2n)!} f^{(2n)}(\xi) +,\quad +0 < \xi < \infty +\end{align*} +\end{frame}
\ No newline at end of file diff --git a/buch/papers/laguerre/presentation/sections/laguerre.tex b/buch/papers/laguerre/presentation/sections/laguerre.tex new file mode 100644 index 0000000..cba9ffb --- /dev/null +++ b/buch/papers/laguerre/presentation/sections/laguerre.tex @@ -0,0 +1,88 @@ +\section{Laguerre-Polynome} + +\begin{frame}{Laguerre-Differentialgleichung} + +\begin{itemize} +\item Benannt nach Edmond Nicolas Laguerre (1834-1886) +\item Aus Artikel von 1879, +in dem er $\int_0^\infty \exp(-x)/x \, dx$ analysierte +\end{itemize} + +\begin{align*} +x y''(x) + (1 - x) y'(x) + n y(x) + & = +0 +, \quad +n \in \mathbb{N}_0 +, \quad +x \in \mathbb{R} +\end{align*} + +\end{frame} + +\begin{frame}{Lösen der Differentialgleichung} + +\begin{align*} +x y''(x) + (1 - x) y'(x) + n y(x) + & = +0 +\\ +\end{align*} + +\uncover<2->{ +\centering +\begin{tikzpicture}[remember picture,overlay] +%% use here too +\path[draw=mainColor, very thick,->](0, 1.1) to +node[anchor=west]{Potenreihenansatz} (0, -0.8); +\end{tikzpicture} +} + +\begin{align*} +\uncover<3->{ +L_n(x) + & = +\sum_{k=0}^{n} \frac{(-1)^k}{k!} \binom{n}{k} x^k +} +\end{align*} +\uncover<4->{ +\begin{itemize} + \item Die Lösungen der DGL sind die Laguerre-Polynome +\end{itemize} +} +\end{frame} + +\begin{frame} +\begin{figure}[h] +\centering +\scalebox{0.66}{\input{../images/laguerre_polynomes.pgf}} +\caption{Laguerre-Polynome vom Grad $0$ bis $7$} +\end{figure} +\end{frame} + +\begin{frame}{Orthogonalität} +\begin{itemize}[<+->] +\item Beweis: Umformen in Sturm-Liouville-Problem (siehe Paper) +\begin{alignat*}{5} +((p(x) &y'(x)))' + q(x) &y(x) +&= +\lambda &w(x) &y(x) +\\ +((x e^{-x} &y'(x)))' + 0 &y(x) +&= +n &e^{-x} &y(x) +\end{alignat*} +\item Definitionsbereich $(0, \infty)$ +\item Gewichtsfunktion $w(x) = e^{-x}$ +\end{itemize} + +\only<4>{ +\begin{align*} +\int_0^\infty e^{-x} L_n(x) L_m(x) \, dx += +0 +,\quad +n, m \in \mathbb{N} +\end{align*} +} +\end{frame}
\ No newline at end of file |