diff options
author | daHugen <david.hugentobler@ost.ch> | 2022-07-27 14:06:50 +0200 |
---|---|---|
committer | daHugen <david.hugentobler@ost.ch> | 2022-07-27 14:06:50 +0200 |
commit | 70c7a56a5b596a09cb63f5749eee342ab2086770 (patch) | |
tree | 7d7181334d0de579097f0a36a52299a60b68b325 /buch/papers/lambertw | |
parent | Update to next version, which includes changes in syntax and text structure (diff) | |
download | SeminarSpezielleFunktionen-70c7a56a5b596a09cb63f5749eee342ab2086770.tar.gz SeminarSpezielleFunktionen-70c7a56a5b596a09cb63f5749eee342ab2086770.zip |
made some changes
Diffstat (limited to '')
-rw-r--r-- | buch/papers/lambertw/teil4.tex | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/buch/papers/lambertw/teil4.tex b/buch/papers/lambertw/teil4.tex index c959715..c79aa0c 100644 --- a/buch/papers/lambertw/teil4.tex +++ b/buch/papers/lambertw/teil4.tex @@ -363,9 +363,9 @@ Auf dem rechten Term von \eqref{lambertw:eqMitExp} beginnen wir langsam eine äh Die erste Sache die uns in \eqref{lambertw:eqMitExp} stört ist, dass \(\eta\) als Potenz da steht. Dieses Problem können wir loswerden, indem wir beidseitig mit \(\:\displaystyle \frac{1}{r_0-y_0}\:\) potenzieren: \begin{equation} - e^{\displaystyle \frac{-4t}{r_0-y_0}+\frac{y_0+r_0}{r_0-y_0}} + \operatorname{exp}\left(\displaystyle \frac{-4t}{r_0-y_0}+\frac{y_0+r_0}{r_0-y_0}\right) = - \eta\cdot e^{\displaystyle \frac{y_0+r_0}{r_0-y_0}\eta} . + \eta\cdot \operatorname{exp}\left(\displaystyle \frac{y_0+r_0}{r_0-y_0}\eta\right). \label{lambertw:eqOhnePotenz} \end{equation} Das nächste Problem auf welches wir in \eqref{lambertw:eqOhnePotenz} treffen ist, dass \(\eta\) nicht alleine im Exponent steht. Dies kann elegant mit folgender Substitution gelöst werden: @@ -379,14 +379,14 @@ Es gäbe natürlich andere Substitutionen wie z.B. \[\displaystyle \chi=\frac{y_0+r_0}{r_0-y_0}\cdot\eta,\] die auf dasselbe Ergebnis führen würden, aber \eqref{lambertw:eqChiSubst} liefert in einem Schritt die kompakteste Lösung. Also fahren wir mit der Substitution \eqref{lambertw:eqChiSubst} weiter, setzen diese in die Gleichung \eqref{lambertw:eqOhnePotenz} ein und multiplizieren beidseitig mit \(\chi\). Daraus erhalten wir folgende Gleichung: \begin{equation} - \chi\cdot e^{\displaystyle \chi-\frac{4t}{r_0-y_0}} + \chi\cdot \operatorname{exp}\left(\displaystyle \chi-\frac{4t}{r_0-y_0}\right) = \chi\eta\cdot e^{\displaystyle \chi\eta}. \label{lambertw:eqNachSubst} \end{equation} Nun sind wir endlich soweit, dass wir die angedeutete Lambert-\(W\)-Funktion \(W(x)\)einsetzen können. Wenn wir beidseitig \(W(x)\) anwenden, dann erhalten wir folgenden Ausdruck: \begin{equation} - W\left(\chi\cdot e^{\displaystyle \chi-\frac{4t}{r_0-y_0}}\right) + W\left(\chi\cdot \operatorname{exp}\left(\displaystyle \chi-\frac{4t}{r_0-y_0}\right)\right) = \chi\eta. \end{equation} @@ -396,7 +396,7 @@ Nach dem Auflösen nach \(x\) welches in \(\eta\) enthalten ist, erhalten wir di \label{lambertw:eqFunkXNachT} x(t) &= - x_0\cdot\sqrt{\frac{W\left(\chi\cdot e^{\displaystyle \chi-\frac{4t}{r_0-y_0}}\right)}{\chi}}, \\ + x_0\cdot\sqrt{\frac{W\left(\chi\cdot \operatorname{exp}\left(\displaystyle \chi-\frac{4t}{r_0-y_0}\right)\right)}{\chi}}, \\ \label{lambertw:eqFunkYNachT} y(x(t)) = |