aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/parzyl/teil3.tex
diff options
context:
space:
mode:
authortschwall <55748566+tschwall@users.noreply.github.com>2022-08-13 14:22:36 +0200
committertschwall <55748566+tschwall@users.noreply.github.com>2022-08-13 14:22:36 +0200
commit8664c5cb874029c45314c18d1d1b0d2be4bb5a9c (patch)
tree5f94c004b3424eb5f1e6d9e32ecae2157d37d001 /buch/papers/parzyl/teil3.tex
parentmikroschritt (diff)
downloadSeminarSpezielleFunktionen-8664c5cb874029c45314c18d1d1b0d2be4bb5a9c.tar.gz
SeminarSpezielleFunktionen-8664c5cb874029c45314c18d1d1b0d2be4bb5a9c.zip
Added Part 3
Diffstat (limited to '')
-rw-r--r--buch/papers/parzyl/teil3.tex78
1 files changed, 76 insertions, 2 deletions
diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex
index 4e44bd6..12b7519 100644
--- a/buch/papers/parzyl/teil3.tex
+++ b/buch/papers/parzyl/teil3.tex
@@ -3,6 +3,80 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Teil 3
-\label{parzyl:section:teil3}}
+\section{Eigenschaften
+\label{parzyl:section:Eigenschaften}}
\rhead{Teil 3}
+\subsection{Potenzreihenentwicklung
+ \label{parzyl:potenz}}
+Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind, können auch als Potenzreihen geschrieben werden
+\begin{align}
+ w_1(k,z)
+ &=
+ e^{-z^2/4} \,
+ {}_{1} F_{1}
+ (
+ {\textstyle \frac{1}{4}}
+ - k, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2)
+ =
+ e^{-\frac{z^2}{4}}
+ \sum^{\infty}_{n=0}
+ \frac{\left ( \frac{1}{4} - k \right )_{n}}{\left ( \frac{1}{2}\right )_{n}}
+ \frac{\left ( \frac{1}{2} z^2\right )^n}{n!} \\
+ &=
+ e^{-\frac{z^2}{4}}
+ \left (
+ 1
+ +
+ \left ( \frac{1}{2} - 2k \right )\frac{z^2}{2!}
+ +
+ \left ( \frac{1}{2} - 2k \right )\left ( \frac{5}{2} - 2k \right )\frac{z^4}{4!}
+ +
+ \dots
+ \right )
+\end{align}
+und
+\begin{align}
+ w_2(k,z)
+ &=
+ ze^{-z^2/4} \,
+ {}_{1} F_{1}
+ (
+ {\textstyle \frac{3}{4}}
+ - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2)
+ =
+ ze^{-\frac{z^2}{4}}
+ \sum^{\infty}_{n=0}
+ \frac{\left ( \frac{3}{4} - k \right )_{n}}{\left ( \frac{3}{2}\right )_{n}}
+ \frac{\left ( \frac{1}{2} z^2\right )^n}{n!} \\
+ &=
+ e^{-\frac{z^2}{4}}
+ \left (
+ z
+ +
+ \left ( \frac{3}{2} - 2k \right )\frac{z^3}{3!}
+ +
+ \left ( \frac{3}{2} - 2k \right )\left ( \frac{7}{2} - 2k \right )\frac{z^5}{5!}
+ +
+ \dots
+ \right ).
+\end{align}
+Bei den Potenzreihen sieht man gut, dass die Ordnung des Polynoms im generellen ins unendliche geht. Es gibt allerdings die Möglichkeit für bestimmte k das die Terme in der Klammer gleich null werden und das Polynom somit eine endliche Ordnung $n$ hat. Dies geschieht bei $w_1(k,z)$ falls
+\begin{equation}
+ k = \frac{1}{4} + n \qquad n \in \mathbb{N}_0
+\end{equation}
+und bei $w_2(k,z)$ falls
+\begin{equation}
+ k = \frac{3}{4} + n \qquad n \in \mathbb{N}_0.
+\end{equation}
+
+\subsection{Ableitung}
+Es kann gezeigt werden, dass die Ableitungen $\frac{\partial w_1(z,k)}{\partial z}$ und $\frac{\partial w_2(z,k)}{\partial z}$ einen Zusammenhang zwischen $w_1(z,k)$ und $w_2(z,k)$ zeigen. Die Ableitung von $w_1(z,k)$ nach $z$ kann über die Produktregel berechnet werden und ist gegeben als
+\begin{equation}
+ \frac{\partial w_1(z,k)}{\partial z} = \left (\frac{1}{2} - 2k \right ) w_2(z, k -\frac{1}{2}) - \frac{1}{2} z w_1(z,k),
+\end{equation}
+und die Ableitung von $w_2(z,k)$ als
+\begin{equation}
+ \frac{\partial w_2(z,k)}{\partial z} = w_1(z, k -\frac{1}{2}) - \frac{1}{2} z w_2(z,k).
+\end{equation}
+Über diese Eigenschaft können einfach weitere Ableitungen berechnet werden.
+