diff options
author | Erik Löffler <100943759+erik-loeffler@users.noreply.github.com> | 2022-08-25 20:51:00 +0200 |
---|---|---|
committer | Erik Löffler <100943759+erik-loeffler@users.noreply.github.com> | 2022-08-25 20:51:00 +0200 |
commit | 8cceb71e114aa1d01de6988810b15c61193d2a70 (patch) | |
tree | 3d4f880d4c4a8dd9b7854b6d1a3f2d7206bd484f /buch/papers/sturmliouville/tschebyscheff_beispiel.tex | |
parent | Recommiting, something went wrong last time. (diff) | |
parent | korrigiert (diff) | |
download | SeminarSpezielleFunktionen-8cceb71e114aa1d01de6988810b15c61193d2a70.tar.gz SeminarSpezielleFunktionen-8cceb71e114aa1d01de6988810b15c61193d2a70.zip |
Merge remote-tracking branch 'origin/sturmliouville/redabranch' into sturmliouville/erik-branch
Diffstat (limited to '')
-rw-r--r-- | buch/papers/sturmliouville/tschebyscheff_beispiel.tex | 44 |
1 files changed, 29 insertions, 15 deletions
diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex index b247441..5ede99d 100644 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -8,6 +8,13 @@ \subsection{Tschebyscheff-Polynome \label{sturmliouville:sub:tschebyscheff-polynome}} \rhead{Tschebyscheff-Polynome} +In diesem Unterkapitel wird anhand der +Tschebyscheff-Differentialgleichung~\eqref{buch:potenzen:tschebyscheff:dgl} gezeigt, dass die Tschebyscheff-Polynome orthogonal zueinander sind. +Zu diesem Zweck werden die Koeffizientenfunktionen nochmals dargestellt, so dass +überprüft werden kann, ob die Randbedingungen erfüllt werden können. +Sobald feststeht, ob das Problem regulär oder singulär ist, zeigt eine +kleine Rechnung, dass die Lösungen orthogonal sind. + \subsubsection*{Definition der Koeffizientenfunktion} Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfunktionen, die man braucht, schon aufgelistet: @@ -35,8 +42,8 @@ Beim Einsetzen in die Randbedingung \eqref{sturmliouville:eq:randbedingungen}, erhält man \begin{equation} \begin{aligned} - k_a y(-1) + h_a y'(-1) &= 0\\ - k_b y(-1) + h_b y'(-1) &= 0. + k_a y(-1) + h_a p(-1) y'(-1) &= 0\\ + k_b y(1) + h_b p(1) y'(-1) &= 0. \end{aligned} \end{equation} Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome @@ -46,17 +53,16 @@ Verifizierung der Randbedingung wählt man $n=0$. Somit erhält man \begin{equation} \begin{aligned} - k_a T_0(-1) + h_a T_{0}'(-1) &= k_a = 0\\ - k_b T_0(1) + h_b T_{0}'(1) &= k_b = 0. + k_a T_0(-1) + h_a p(-1) T_{0}'(-1) &= k_a = 0\\ + k_b T_0(1) + h_b p(1) T_{0}'(1) &= k_b = 0. \end{aligned} \end{equation} -Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, +Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab können, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden. -Es wird also erneut gezeigt, dass die Randbedingungen $[-1,1]$, -die Sturm-Liouville-Randbedingungen erfüllen. +Es wurde somit gezeigt, dass die Sturm-Liouville-Randbedingungen erfüllt sind. -\subsubsection*{regulär oder singulär?} +\subsubsection*{Handelt es sich um ein reguläres oder Singuläres Problem?} Für das reguläre Problem muss laut der Definition~\ref{sturmliouville:def:reguläres_sturm-liouville-problem} die funktion $p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und @@ -74,19 +80,27 @@ Die Funktion p(x)^{-1} = \frac{1}{\sqrt{1-x^2}} \end{equation*} ist die gleiche wie $w(x)$ und erfüllt die Bedingung. - +Es zeigt sich also, dass $p(x)$, $p'(x)$, $q(x)$ und $w(x)$ +die Bedingungen erfüllen. +Da auch die Randbedingungen erfüllt sind, handelt es sich um ein reguläres Sturm-Liouville-Problem. \begin{beispiel} - Die Gleichung + In diesem Beispiel wird zuletzt die Orthogonalität der Lösungsfunktion + illustriert. + Dazu verwendet man das Skalarprodukt \[ - \int_{a}^{b} w(x) y_m y_n = 0 + \int_{a}^{b} w(x) y_m y_n = 0. \] - - mit - $y_m(x) = T_1(x)$ und $y_n(x) = T_2(x)$ eingesetzt sowie $a=-1$ und $b = 1$ + Eigesetzt ergibt dies $y_m(x) = T_1(x)$ und $y_n(x) = T_2(x)$, sowie $a=-1$ und $b = 1$ ergibt \[ - \int_{-1}^{1} w(x) x (2x^2-1) dx = 0. + \begin{aligned} + \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} x (2x^2-1) dx &= + \lbrack - \frac{\sqrt{1-x^2}(2x^2+1)}{3}\rbrack_{-1}^{1}\\ + &= 0. + \end{aligned} \] + Somit ist gezeigt, dass $T_1(x)$ und $T_2(x)$ orthogonal sind. + Analog kann Orthogonalität für alle $y_n(x)$ und $y_m(x)$ mit $n \ne m$ gezeigt werden. \end{beispiel} |