diff options
author | Erik Löffler <100943759+erik-loeffler@users.noreply.github.com> | 2022-08-23 15:04:54 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-08-23 15:04:54 +0200 |
commit | bbbb0d9f4f24fe66f89cf6ff77b17841c7d3816d (patch) | |
tree | 64d46f0c5d5442c3f30c81042868abce660389a7 /buch/papers/sturmliouville/tschebyscheff_beispiel.tex | |
parent | Merge branch 'AndreasFMueller:master' into master (diff) | |
parent | Merge remote-tracking branch 'origin/sturmliouville/redabranch' into sturmlio... (diff) | |
download | SeminarSpezielleFunktionen-bbbb0d9f4f24fe66f89cf6ff77b17841c7d3816d.tar.gz SeminarSpezielleFunktionen-bbbb0d9f4f24fe66f89cf6ff77b17841c7d3816d.zip |
Merge pull request #9 from haddoucher/sturmliouville/erik-branch
Sturmliouville/erik branch
Diffstat (limited to '')
-rw-r--r-- | buch/papers/sturmliouville/tschebyscheff_beispiel.tex | 61 |
1 files changed, 35 insertions, 26 deletions
diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex index c304632..cad71d7 100644 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -4,9 +4,11 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\subsection{Sind Tschebyscheff-Polynome orthogonal zueinander?\label{sub:tschebyscheff-polynome}} +\subsection{Sind Tschebyscheff-Polynome orthogonal zueinander? +\label{sub:tschebyscheff-polynome}} \subsubsection*{Definition der Koeffizientenfunktion} -Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfunktionen, die man braucht, schon aufgeliste, und zwar mit +Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die +Koeffizientenfunktionen, die man braucht, schon aufgeliste, und zwar mit \begin{align*} w(x) &= \frac{1}{\sqrt{1-x^2}} \\ p(x) &= \sqrt{1-x^2} \\ @@ -15,15 +17,25 @@ Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfun Da die Sturm-Liouville-Gleichung \begin{equation} \label{eq:sturm-liouville-equation-tscheby} - \frac{d}{dx} (\sqrt{1-x^2} \frac{dy}{dx}) + (0 + \lambda \frac{1}{\sqrt{1-x^2}}) y = 0 + \frac{d}{dx} (\sqrt{1-x^2} \frac{dy}{dx}) + + (0 + \lambda \frac{1}{\sqrt{1-x^2}}) y + = + 0 \end{equation} -nun mit den Koeffizientenfunktionen aufgestellt werden kann, bleibt die Frage, ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt. +nun mit den Koeffizientenfunktionen aufgestellt werden kann, bleibt die Frage, +ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt. \subsubsection*{regulär oder singulär?} -Für das reguläre Problem laut der Definition \ref{def:reguläres_sturm-liouville-problem} muss die funktion $p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und $w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein --- und sie sind es auch. -Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art mit Hilfe von Hyperbelfunktionen +Für das reguläre Problem laut der +Definition~\ref{def:reguläres_sturm-liouville-problem} muss die funktion +$p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und +$w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein --- und sie sind es auch. +Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art mit Hilfe +von Hyperbelfunktionen \begin{equation} - T_n(x) = \cos n (\arccos x) + T_n(x) + = + \cos n (\arccos x) \end{equation}. Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus: \begin{equation} @@ -31,7 +43,8 @@ Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus: (-1)^n \cosh (n \arccos (-x)), & x<-1 \end{array}\right. \end{equation}, jedoch ist die Orthogonalität nur auf dem Intervall $[ -1, 1]$ sichergestellt. -Die nächste Bedingung beinhaltet, dass die Funktion $p(x)$ und $w(x)>0$ sein müssen. +Die nächste Bedingung beinhaltet, dass die Funktion $p(x)$ und $w(x)>0$ sein +müssen. Die Funktion \begin{equation*} p(x)^{-1} = \frac{1}{\sqrt{1-x^2}} @@ -40,7 +53,8 @@ ist die gleiche wie $w(x)$ und erfüllt die Bedingung. \subsubsection*{Randwertproblem} Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$. -Da sich die Polynome nur auf dem Intervall $[ -1,1 ]$ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt. +Da sich die Polynome nur auf dem Intervall $[ -1,1 ]$ orthogonal verhalten, +sind $a = -1$ und $b = 1$ gesetzt. Beim einsetzen in die Randbedingung \eqref{eq:randbedingungen}, erhält man \begin{equation} \begin{aligned} @@ -48,8 +62,10 @@ Beim einsetzen in die Randbedingung \eqref{eq:randbedingungen}, erhält man k_b y(-1) + h_b y'(-1) &= 0. \end{aligned} \end{equation} -Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \ref{sub:definiton_der_tschebyscheff-Polynome}). -Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die Verifizierung der Randbedingung wählt man $n=2$. +Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome +(siehe \ref{sub:definiton_der_tschebyscheff-Polynome}). +Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die +Verifizierung der Randbedingung wählt man $n=2$. Somit erhält man \begin{equation} \begin{aligned} @@ -57,24 +73,17 @@ Somit erhält man k_b T_2(1) + h_b T_{2}'(1) &= k_b = 0. \end{aligned} \end{equation} -Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden. -Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind. +Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, +damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige +$h_a \ne 0$ und $h_b \ne 0$ gewählt werden. +Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome +auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden +Lösungen orthogonal sind. \begin{beispiel} - Die Gleichung \eqref{eq:skalar-sturm-liouville} mit $y_m = T_1(x)$ und $y_n(x) = T_2(x)$ eingesetzt sowie $a=-1$ und $b = 1$ ergibt + Die Gleichung \eqref{eq:skalar-sturm-liouville} mit $y_m = T_1(x)$ und + $y_n(x) = T_2(x)$ eingesetzt sowie $a=-1$ und $b = 1$ ergibt \[ \int_{-1}^{1} w(x) x (2x^2-1) dx = 0. \] \end{beispiel} - - - - - - - - - - - - |