aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/sturmliouville/waermeleitung_beispiel.tex
diff options
context:
space:
mode:
authorErik Löffler <100943759+erik-loeffler@users.noreply.github.com>2022-08-26 11:44:29 +0200
committerErik Löffler <100943759+erik-loeffler@users.noreply.github.com>2022-08-26 11:44:29 +0200
commitec1ccb907783a3429e59a7e0caca50a2f25ad457 (patch)
tree6e8c7e7526f53b94db1e29efe1bee56ad52ae570 /buch/papers/sturmliouville/waermeleitung_beispiel.tex
parentMerge pull request #70 from haddoucher/master (diff)
parentKorrekturen (diff)
downloadSeminarSpezielleFunktionen-ec1ccb907783a3429e59a7e0caca50a2f25ad457.tar.gz
SeminarSpezielleFunktionen-ec1ccb907783a3429e59a7e0caca50a2f25ad457.zip
Merge remote-tracking branch 'origin/sturmliouville/redabranch' into sturmliouville/erik-branch
Diffstat (limited to '')
-rw-r--r--buch/papers/sturmliouville/waermeleitung_beispiel.tex20
1 files changed, 10 insertions, 10 deletions
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
index 0ef1072..290bf35 100644
--- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex
+++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
@@ -5,8 +5,8 @@
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\subsection{Wärmeleitung in homogenem Stab}
-\rhead{Wärmeleitung in homogenem Stab}
+\section{Fourierreihe als Lösung des Sturm-Liouville-Problems
+(Wärmeleitung)}
In diesem Abschnitt wird das Problem der Wärmeleitung in einem homogenen Stab
betrachtet, angeschaut wie das Sturm-Liouville-Problem bei der Beschreibung
@@ -35,7 +35,7 @@ werden.
%
% Randbedingungen für Stab mit konstanten Endtemperaturen
%
-\subsubsection{Randbedingungen für Stab mit Enden auf konstanter Temperatur}
+\subsection{Randbedingungen für Stab mit Enden auf konstanter Temperatur}
Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die
Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene
@@ -55,7 +55,7 @@ als Randbedingungen.
% Randbedingungen für Stab mit isolierten Enden
%
-\subsubsection{Randbedingungen für Stab mit isolierten Enden}
+\subsection{Randbedingungen für Stab mit isolierten Enden}
Bei isolierten Enden des Stabes können grundsätzlich beliebige Temperaturen für
$x = 0$ und $x = l$ auftreten.
@@ -83,7 +83,7 @@ als Randbedingungen.
% Lösung der Differenzialgleichung mittels Separation
%
-\subsubsection{Lösung der Differenzialgleichung}
+\subsection{Lösung der Differenzialgleichung}
Da die Lösungsfunktion $u$ von zwei Variablen abhängig ist, wird die
Gleichung~\eqref{sturmliouville:eq:example-fourier-heat-equation} zunächst
@@ -216,7 +216,7 @@ somit auch zu orthogonalen Lösungen führen.
% Lösung von X(x), Teil mu
%
-\subsubsection{Lösung der Differentialgleichung in $x$}
+\subsection{Lösund der Differentialgleichung in $x$}
Als erstes wird auf die
Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingegangen.
Aufgrund der Struktur der Gleichung
@@ -384,7 +384,7 @@ wie auch für den Stab mit isolierten Enden
-\frac{n^{2}\pi^{2}}{l^{2}}.
\end{equation}
-\subsubsection{Fourierreihe als Lösung}
+\subsection{Fourierreihe als Lösung}
Das Resultat~\eqref{sturmliouville:eq:example-fourier-mu-solution} gibt nun
wegen der neuen Variablen $n \in \mathbb{N}_0$ vor, dass es potenziell
@@ -684,7 +684,7 @@ was sich wie folgt nach $a_0$ auflösen lässt:
% Lösung von T(t)
%
-\subsubsection{Lösung der Differentialgleichung in $t$}
+\subsection{Lösung der Differentialgleichung in $t$}
Zuletzt wird die zweite Gleichung der
Separation~\eqref{sturmliouville:eq:example-fourier-separated-t} betrachtet.
Dazu betrachtet man das charakteristische Polynom
@@ -719,7 +719,7 @@ ergibt.
Dieses Resultat kann nun mit allen vorhergehenden Resultaten zusammengesetzt
werden um die vollständige Lösung für das Stab-Problem zu erhalten.
-\subsubsection{Lösung für einen Stab mit Enden auf konstanter Temperatur}
+\subsection{Lösung für einen Stab mit Enden auf konstanter Temperatur}
\[
\begin{aligned}
u(t,x)
@@ -733,7 +733,7 @@ werden um die vollständige Lösung für das Stab-Problem zu erhalten.
\end{aligned}
\]
-\subsubsection{Lösung für einen Stab mit isolierten Enden}
+\subsection{Lösung für einen Stab mit isolierten Enden}
\[
\begin{aligned}
u(t,x)