aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/sturmliouville
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2022-08-26 01:09:18 +0200
committerGitHub <noreply@github.com>2022-08-26 01:09:18 +0200
commit72128a434eb24e2dd4c1d3e5360c115eaba7289b (patch)
tree80b25e41349d1a5ba659386f9835e01e0d63eed8 /buch/papers/sturmliouville
parentMerge pull request #69 from samnied/master (diff)
parentMerge pull request #11 from haddoucher/sturmliouville/erik-branch (diff)
downloadSeminarSpezielleFunktionen-72128a434eb24e2dd4c1d3e5360c115eaba7289b.tar.gz
SeminarSpezielleFunktionen-72128a434eb24e2dd4c1d3e5360c115eaba7289b.zip
Merge pull request #70 from haddoucher/master
2. Überarbeitung
Diffstat (limited to '')
-rw-r--r--buch/papers/sturmliouville/beispiele.tex3
-rw-r--r--buch/papers/sturmliouville/eigenschaften.tex155
-rw-r--r--buch/papers/sturmliouville/einleitung.tex166
-rw-r--r--buch/papers/sturmliouville/main.tex9
-rw-r--r--buch/papers/sturmliouville/tschebyscheff_beispiel.tex137
-rw-r--r--buch/papers/sturmliouville/waermeleitung_beispiel.tex231
6 files changed, 418 insertions, 283 deletions
diff --git a/buch/papers/sturmliouville/beispiele.tex b/buch/papers/sturmliouville/beispiele.tex
index 94082cf..4df5619 100644
--- a/buch/papers/sturmliouville/beispiele.tex
+++ b/buch/papers/sturmliouville/beispiele.tex
@@ -4,8 +4,7 @@
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
\section{Beispiele
-\label{sturmliouville:section:examples}}
-\rhead{Beispiele}
+\label{sturmliouville:sec:examples}}
% Fourier: Erik work
\input{papers/sturmliouville/waermeleitung_beispiel.tex}
diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex
index bef8a39..8616172 100644
--- a/buch/papers/sturmliouville/eigenschaften.tex
+++ b/buch/papers/sturmliouville/eigenschaften.tex
@@ -4,80 +4,117 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
+
+% TODO:
+% state goal
+% use only what is necessary
+% make sure it is easy enough to understand (sentences as shot as possible)
+% -> Eigenvalue problem with matrices only
+% -> prepare reader for following examples
+%
+% order:
+% 1. Eigenvalue problems with matrices
+% 2. Sturm-Liouville is an Eigenvalue problem
+% 3. Sturm-Liouville operator (self-adjacent)
+% 4. Spectral theorem (brief)
+% 5. Base of orthonormal functions
+
\section{Eigenschaften von Lösungen
-\label{sturmliouville:section:solution-properties}}
+\label{sturmliouville:sec:solution-properties}}
\rhead{Eigenschaften von Lösungen}
-Im weiteren werden nun die Eigenschaften der Lösungen eines
-Sturm-Liouville-Problems diskutiert und aufgezeigt, wie diese Eigenschaften
-zustande kommen.
+Im weiteren werden nun die Eigenschaften der Lösung eines
+Sturm-Liouville-Problems diskutiert.
+Im wesentlichen wird darauf eingegangen, wie die Orthogonalität der Lösungen
+zustande kommt, damit diese später in den Beispielen verwendet werden kann.
+Dazu wird zunächst das Eigenwertproblem für Matrizen wiederholt und angeschaut
+unter welchen Voraussetzungen die Lösungen dieses Problems orthogonal sind.
+Dann wird gezeigt, dass das Sturm-Liouville-Problem auch ein Eigenwertproblem
+dieser Art ist und es wird auf au die Orthogonalität der Lösungsfunktionen
+geschlossen.
+
+\subsection{Eigenwertprobleme mit symmetrischen Matrizen
+\label{sturmliouville:sec:eigenvalue-problem-matrix}}
+
+% TODO: intro
-Dazu wird der Operator $L_0$ welcher bereits in
-Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} betrachtet
-wurde, noch etwas genauer angeschaut.
-Es wird also im Folgenden
+Angenomen es sei eine reelle, symmetrische $n \times n$-Matrix $A$ gegeben.
+Dass $A$ symmetrisch ist, bedeutet, dass
\[
- L_0
+ \langle Av, w \rangle
=
- -\frac{d}{dx}p(x)\frac{d}{dx}
+ \langle v, Aw \rangle
+ \qquad
+ v, w \in \mathbb{R}^n
\]
-zusammen mit den Randbedingungen
+erfüllt ist.
+
+Für reelle, symmetrische Matrizen zeigt dies auch direkt, dass die Matrix
+selbstadjungiert ist.
+Das ist wichtig, da der Spektralsatz~\cite{sturmliouville:spektralsatz-wiki}
+für selbstadjungierte Matrizen formuliert ist. Dieser sagt nun aus, dass die
+Matrix $A$ diagonalisierbar ist.
+In anderen Worten bilden die Eigenvektoren $v_i \in \mathbb{R}^n$ des
+Eigenwertproblems
\[
- \begin{aligned}
- k_a y(a) + h_a p(a) y'(a) &= 0 \\
- k_b y(b) + h_b p(b) y'(b) &= 0
- \end{aligned}
+ A v_i
+ =
+ \lambda_i v_i
+ \qquad \lambda_i \in \mathbb{R}
\]
-verwendet.
-Wie im Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} bereits
-gezeigt, resultieren die Randbedingungen aus der Anforderung den Operator $L_0$
-selbsadjungiert zu machen.
-Es wurde allerdings noch nicht darauf eingegangen, welche Eigenschaften dies
-für die Lösungen des Sturm-Liouville-Problems zur Folge hat.
-
-\subsubsection{Exkurs zum Spektralsatz}
+eine Orthogonalbasis.
-Um zu verstehen welche Eigenschaften der selbstadjungierte Operator $L_0$ in
-den Lösungen hervorbringt, wird der Spektralsatz benötigt.
+\subsection{Das Sturm-Liouville-Problem als Eigenwertproblem}
-Dieser wird in der linearen Algebra oft verwendet um zu zeigen, dass eine Matrix
-diagonalisierbar ist, beziehungsweise dass eine Orthonormalbasis existiert.
-
-Im Fall einer gegebenen $n\times n$-Matrix $A$ mit reellen Einträgen wird dazu
-zunächst gezeigt, dass $A$ selbstadjungiert ist, also dass
+In Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} wurde bereits
+der Operator
\[
- \langle Av, w \rangle
+ L
=
- \langle v, Aw \rangle
+ \frac{1}{w(x)}\left( -\frac{d}{dx}p(x) \frac{d}{dx} + q(x)\right)
+\]
+eingeführt.
+Dieser wird nun verwendet um die Differenzialgleichung
+\[
+ (p(x)y'(x))' + q(x)y(x)
+ =
+ \lambda w(x) y(x)
\]
-für $ v, w \in \mathbb{R}^n$ gilt.
-Ist dies der Fall, kann die Aussage des Spektralsatzes
-\cite{sturmliouville:spektralsatz-wiki} verwended werden.
-Daraus folgt dann, dass eine Orthonormalbasis aus Eigenvektoren existiert,
-wenn $A$ nur Eigenwerte aus $\mathbb{R}$ besitzt.
+in das Eigenwertproblem
+\begin{equation}
+ \label{sturmliouville:eq:eigenvalue-problem}
+ L y
+ =
+ \lambda y.
+\end{equation}
+umzuschreiben.
-Dies ist allerdings nicht die Einzige Version des Spektralsatzes.
-Unter anderen gibt es den Spektralsatz für kompakte Operatoren
-\cite{sturmliouville:spektralsatz-wiki}, welcher für das
-Sturm-Liouville-Problem von Bedeutung ist.
-Welche Voraussetzungen erfüllt sein müssen, um diese Version des
-Satzes verwenden zu können, wird hier aber nicht diskutiert und kann bei den
-Beispielen in diesem Kapitel als gegeben betrachtet werden.
-Grundsätzlich ist die Aussage in dieser Version dieselbe, wie bei den Matrizen,
-also dass für ein Operator eine Orthonormalbasis aus Eigenvektoren existiert,
-falls er selbstadjungiert ist.
+\subsection{Orthogonalität der Lösungsfunktionen}
-\subsubsection{Anwendung des Spektralsatzes auf $L_0$}
+Nun wird das Eigenwertproblem~\eqref{sturmliouville:eq:eigenvalue-problem} näher
+angeschaut.
+Um auf die Orthogonalität der Lösungsfunktion zu schliessen, wird dafür der
+Operator $L$ genauer betrachtet.
+Analog zur Matrix $A$ aus
+Abschnitt~\ref{sturmliouville:sec:eigenvalue-problem-matrix} kann auch für
+$L$ gezeigt werden, dass dieser Operator selbstadjungiert ist, also dass
+\[
+ \langle L v, w\rangle
+ =
+ \langle v, L w\rangle
+\]
+gilt.
+Wie in Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} bereits
+gezeigt, ist dies durch die
+Randbedingungen~\eqref{sturmliouville:eq:randbedingungen} des
+Sturm-Liouville-Problems sicher gestellt.
-Der Spektralsatz besagt also, dass, weil $L_0$ selbstadjungiert ist, eine
-Orthonormalbasis aus Eigenvektoren existiert.
-Genauer bedeutet dies, dass alle Eigenvektoren, beziehungsweise alle Lösungen
-des Sturm-Liouville-Problems orthogonal zueinander sind bezüglich des
-Skalarprodukts, in dem $L_0$ selbstadjungiert ist.
+Um nun über den Spektralsatz~\cite{sturmliouville:spektralsatz-wiki} auf die
+Orthogonalität der Lösungsfunktion $y$ zu schliessen, muss der Operator $L$ ein
+sogenannter ''kompakter Operator'' sein.
+Bei einem regulären Sturm-Liouville-Problem ist diese Eigenschaft für $L$
+gegeben und wird im Weiteren nicht näher diskutiert.
-Erfüllt also eine Differenzialgleichung die in
-Abschnitt~\ref{sturmliouville:section:teil0} präsentierten Eigenschaften und
-erfüllen die Randbedingungen der Differentialgleichung die Randbedingungen
-des Sturm-Liouville-Problems, kann bereits geschlossen werden, dass die
-Lösungsfunktion des Problems eine Linearkombination aus orthogonalen
-Basisfunktionen ist. \ No newline at end of file
+Es kann nun also dank dem Spektralsatz darauf geschlossen werden, dass die
+Lösungsfunktion $y$ eines regulären Sturm-Liouville-Problems eine
+Linearkombination aus orthogonalen Basisfunktionen sein muss.
diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex
index d497622..2299c3c 100644
--- a/buch/papers/sturmliouville/einleitung.tex
+++ b/buch/papers/sturmliouville/einleitung.tex
@@ -1,136 +1,124 @@
%
% einleitung.tex -- Beispiel-File für die Einleitung
+% Author: Réda Haddouche
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
+
\section{Was ist das Sturm-Liouville-Problem\label{sturmliouville:section:teil0}}
-\rhead{Einleitung}
-Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischen Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischen Mathematiker Joseph Liouville.
-Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt und gilt für die Lösung von gewöhnlichen Differentialgleichungen, jedoch verwendet man die Theorie öfters bei der Lösung von partiellen Differentialgleichungen.
-Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle Differentialgleichung handelt, kann man sie in mehrere gewöhnliche Differentialgleichungen umwandeln. Wie z. B. den Separationsansatz, die partielle Differentialgleichung mit mehreren Variablen.
+\rhead{Was ist das Sturm-Liouville-Problem}
+Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischen
+Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem
+französischen Mathematiker Joseph Liouville.
+Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie
+entwickelt.
+Diese gilt für die Lösung von gewöhnlichen Differentialgleichungen.
+Handelt es sich um eine partielle
+Differentialgleichung, kann man sie mittels Separation in
+mehrere gewöhnliche Differentialgleichungen umwandeln.
\begin{definition}
\index{Sturm-Liouville-Gleichung}%
Wenn die lineare homogene Differentialgleichung
-\begin{equation}
+\[
\frac{d^2y}{dx^2} + a(x)\frac{dy}{dx} + b(x)y = 0
-\end{equation}
+\]
als
\begin{equation}
- \label{eq:sturm-liouville-equation}
- \frac{d}{dx}\lbrack p(x) \frac{dy}{dx} \rbrack + \lbrack q(x) + \lambda w(x) \rbrack y = 0
+ \label{sturmliouville:eq:sturm-liouville-equation}
+ \frac{d}{dx} (p(x) \frac{dy}{dx}) + (q(x) +
+ \lambda w(x)) y
+ =
+ 0
\end{equation}
-geschrieben werden kann, dann wird diese Gleichung als Sturm-Liouville-Gleichung bezeichnet.
+geschrieben werden kann, dann wird die
+Gleichung~\eqref{sturmliouville:eq:sturm-liouville-equation} als
+Sturm-Liouville-Gleichung bezeichnet.
\end{definition}
-Alle homogene 2. Ordnung lineare gewöhnliche Differentialgleichungen können in die Form der Gleichung \ref{eq:sturm-liouville-equation} umgeformt werden.
-
-\subsection{Randbedingungen\label{sub:was-ist-das-slp-randbedingungen}}
-Wenn von der Funktion $y(x)$ die Werte $x$ des jeweiligen Randes des Definitionsbereiches anzunehmen sind, also
-\begin{equation}
- y(a) = y(b) = 0,
-\end{equation}
-so spricht man von einer Dirichlet-Randbedingung\footnote{Die Dirichlet-Randbedingung oder auch Randbedingung des ersten Typs genannt ist nach dem deutschen Mathematiker Peter Gstav Lejeune Dirichlet benannt. Sie findet Anwendung auf gewöhnliche oder patielle Differentialgleichungen und gibt mit der Bedingung die Werte an, die für die abgeleitete Lösung innerhalb der Domänengrenze gelten.}, und von einer Neumann-Randbedingung\footnote{Die Neumann-Randbedingung oder auch Randbedingung des zweiten Typs genannt, ist nach dem deutschen Mathematiker Carl Neumann benannt. Sie legt die Werte fest, die eine Lösung entlang der Domänengrenze annehmen muss, wenn eine gewöhnliche oder partielle Differentialgleichung gestellt wird.} spricht man, wenn
-\begin{equation}
- y'(a) = y'(b) = 0
-\end{equation}
-ergibt.
-
-Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung mit den homogenen Randbedingungen des dritten Typs\footnote{Die Randbedingung des dritten Typs, oder Robin-Randbedingungen (benannt nach dem französischen mathematischen Analytiker und angewandten Mathematiker Victor Gustave Robin), wird genannt, wenn sie einer gewöhnlichen oder partiellen Differentialgleichung auferlegt wird, so sind die Spezifikationen einer Linearkombination der Werte einer Funktion sowie die Werte ihrer Ableitung am Rande des Bereichs}
+Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können
+in die Form der Gleichung \eqref{sturmliouville:eq:sturm-liouville-equation}
+umgewandelt werden.
+
+Damit es sich um ein Sturm-Liouville-Problem handelt, benötigt es noch die
+Randbedingungen, die im nächsten Unterkapitel behandelt wird.
+
+\subsection{Randbedingungen
+\label{sturmliouville:sub:was-ist-das-slp-randbedingungen}}
+Geeignete Randbedingungen sind erforderlich, um die Lösungen einer
+Differentialgleichung genau zu bestimmen.
+Die Sturm-Liouville-Gleichung mit homogenen Randbedingungen des dritten Typs
\begin{equation}
-\begin{aligned}
- \label{eq:randbedingungen}
- k_a y(a) + h_a p(a) y'(a) &= 0 \\
- k_b y(b) + h_b p(b) y'(b) &= 0
-\end{aligned}
+ \begin{aligned}
+ \label{sturmliouville:eq:randbedingungen}
+ k_a y(a) + h_a p(a) y'(a) &= 0 \\
+ k_b y(b) + h_b p(b) y'(b) &= 0
+ \end{aligned}
\end{equation}
-kombiniert, dann bekommt man das klassische Sturm-Liouville-Problem.
+ist das klassische Sturm-Liouville-Problem.
-\subsection{Eigenwertproblem}
-Die Gleichungen \ref{eq:sturm-liouville-equation} hat die Form eines Eigenwertproblems
-Wenn bei der Sturm-Liouville-Gleichung \ref{eq:sturm-liouville-equation} alles konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst;
-der Parameter $\lambda$ wird als Eigenwert bezeichnet.
-Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben andere Eigenvektoren.
-Es besteht eine Korrespondenz zwischen den Eigenwerten und den Eigenvektoren.
-Das gleiche gilt auch beim Sturm-Liouville-Problem, und zwar
-\begin{equation}
- \lambda \overset{Korrespondenz}\leftrightarrow y.
-\end{equation}
-
-Die Theorie besagt, wenn $y_m$, $y_n$ Eigenfuktionen des Sturm-Liouville-Problems sind, die verschiedene Eigenwerte $\lambda_m$, $\lambda_n$ ($\lambda_m \neq \lambda_n$) entsprechen, so sind $y_m$, $y_n$ orthogonal zu y -
-dies gilt für das Intervall (a,b).
-Somit ergibt die Gleichung
-\begin{equation}
- \label{eq:skalar-sturm-liouville}
- \int_{a}^{b} w(x)y_m y_n = 0.
-\end{equation}
-\subsection{Koeffizientenfunktionen}
-Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet.
-Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet.
-Es gibt zwei verschiedene Sturm-Liouville-Probleme: das reguläre Sturm-Liouville-Problem und das singuläre Sturm-Liouville-Problem.
-Die Funktionen für das reguläre und das singuläre Sturm-Liouville-Problem sind nicht dieselben.
+\subsection{Koeffizientenfunktionen
+\label{sturmliouville:sub:koeffizientenfunktionen}}
+Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen
+bezeichnet.
+Diese Funktionen erhält man, indem man eine Differentialgleichung in die
+Sturm-Liouville-Form bringt und dann die Koeffizientenfunktionen vergleicht.
+Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion
+oder Dichtefunktion bezeichnet.
+Die Eigenschaften der Koeffizientenfunktionen haben
+einen großen Einfluss auf die Lösbarkeit des Sturm-Liouville-Problems und werden
+im nächsten Abschnitt diskutiert.
%
%Kapitel mit "Das reguläre Sturm-Liouville-Problem"
%
-\subsection{Das reguläre Sturm-Liouville-Problem\label{sub:reguläre_sturm_liouville_problem}}
-Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige Bedingungen beachtet werden.
+\subsection{Das reguläre und singuläre Sturm-Liouville-Problem
+\label{sturmliouville:sub:reguläre_sturm_liouville_problem}}
+Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige
+Bedingungen beachtet werden.
\begin{definition}
- \label{def:reguläres_sturm-liouville-problem}
+ \label{sturmliouville:def:reguläres_sturm-liouville-problem}
\index{regläres Sturm-Liouville-Problem}
Die Bedingungen für ein reguläres Sturm-Liouville-Problem sind:
\begin{itemize}
- \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und reell sein.
- \item sowie müssen in einem endlichen Intervall $[a,b]$ integrierbar sein.
+ \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und
+ reell sein
+ \item sowie in einem endlichen Intervall $[a,b]$ integrierbar
+ sein.
\item $p(x)$ und $w(x)$ sind $>0$.
- \item Es gelten die Randbedingungen \ref{eq:randbedingungen}, wobei $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$.
+ \item Es gelten die Randbedingungen
+ \eqref{sturmliouville:eq:randbedingungen}, wobei
+ $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$.
\end{itemize}
\end{definition}
-Bei einem regulären Sturm-Liouville-Problem geht es darum, wichtige Eigenschaften der Eigenfunktionen beschreiben zu können, ohne sie genau zu kennen.
-
-
-%
-%Kapitel mit "Das singuläre Sturm-Liouville-Problem"
-%
-
-
-\subsection{Das singuläre Sturm-Liouville-Problem\label{sub:singuläre_sturm_liouville_problem}}
-Von einem singulären Sturm-Liouville-Problem spricht man, wenn die Bedingungen des regulärem Problem nicht erfüllt sind.
-\begin{definition}
- \label{def:singulär_sturm-liouville-problem}
- \index{singuläres Sturm-Liouville-Problem}
-Es handelt sich um ein singuläres Sturm-Liouville-Problem, wenn:
- \begin{itemize}
- \item wenn sein Definitionsbereich auf dem Intervall $[ \ a,b] \ $ unbeschränkt ist oder
- \item wenn die Koeffizienten an den Randpunkten Singularitäten haben.
- \end{itemize}
-\end{definition}
-Allerdings kann nur eine der Bedingungen nicht erfüllt sein, so dass es sich bereits um ein singuläres Sturm-Liouville-Problem handelt.
+Wird eine oder mehrere dieser Bedingungen nicht erfüllt, so handelt es sich um
+ein singuläres Sturm-Liouville-Problem.
\begin{beispiel}
Das Randwertproblem
\begin{equation}
\begin{aligned}
- x^2y'' + xy' + (\lambda^2x^2 - m^2)y &= 0, 0<x<a,\\
+ x^2y'' + xy' + (\lambda^2x^2 - m^2)y &= 0 \qquad 0<x<a,\\
y(a) &= 0
\end{aligned}
\end{equation}
ist kein reguläres Sturm-Liouville-Problem.
- Wenn man die Gleichung in die Sturm-Liouville Form umformen, dann ergeben die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$.
- Schaut man jetzt die Bedingungen im Kapitel \ref{sub:reguläre_sturm_liouville_problem} an und vergleicht diese unseren Koeffizientenfunktionen, so erkennt man einige Probleme:
+ Wenn man die Gleichung in die Sturm-Liouville Form umformt, dann
+ erhält man
+ die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$.
+ Schaut man jetzt die Bedingungen in
+ Definition~\ref{sturmliouville:def:reguläres_sturm-liouville-problem} an und
+ vergleicht diese mit unseren Koeffizientenfunktionen, so erkennt man einige
+ Probleme:
\begin{itemize}
\item $p(x)$ und $w(x)$ sind nicht positiv, wenn $x = 0$ ist.
\item $q(x)$ ist nicht kontinuierlich, wenn $x = 0$ ist.
- \item Die Randbedingung bei $x = 0$ fehlt.
+ \item Die Randbedingung bei $x = 0$ und $x = a$ fehlt.
\end{itemize}
\end{beispiel}
-Verwendet man das reguläre Sturm-Liouville-Problem, obwohl eine oder beide Bedingungen nicht erfüllt sind, dann ist es schwierig zu sagen, ob die Lösung eindeutige Ergebnisse hat.
-Es ist schwierig, Kriterien anzuwenden, da die Formulierungen z. B. in der Lösungsfunktion liegen.
-Ähnlich wie bei der Fourier-Reihe gegenüber der Fourier-Transformation gibt es immer noch eine zugehörige Eigenfunktionsentwicklung, und zwar die Integraltransformation sowie gibt es weiterhin verallgemeinerte Eigenfunktionen.
-
+Bei einem regulärem Problem, besteht die Lösung nur aus Eigenvektoren.
+Handelt es sich um ein singuläres Problem, so besteht die Lösung im Allgemeinen
+nicht mehr nur aus Eigenvektoren.
-
-
-
diff --git a/buch/papers/sturmliouville/main.tex b/buch/papers/sturmliouville/main.tex
index 4b5b8af..887e085 100644
--- a/buch/papers/sturmliouville/main.tex
+++ b/buch/papers/sturmliouville/main.tex
@@ -9,6 +9,15 @@
\begin{refsection}
\chapterauthor{Réda Haddouche und Erik Löffler}
+In diesem Kapitel wird zunächst nochmals ein Überblick über das
+Sturm-Liouville-Problem und dessen Randbedingungen gegeben.
+Dann wird ein Zusammenhang zwischen reellen symmetrischen Matrizen und
+dem Sturm-Liouville-Operator $L$ hergestellt, um auf die Orthogonalität der
+Lösungsfunktionen zu schliessen.
+Zuletzt wird anhand von zwei Beispielen gezeigt, dass durch das
+Sturm-Liouville-Problem die Eigenschaften der Lösungen bereits vor dem
+vollständingen Lösen der Beispiele bekannt sind.
+
\input{papers/sturmliouville/einleitung.tex}
%einleitung "was ist das sturm-liouville-problem"
\input{papers/sturmliouville/eigenschaften.tex}
diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex
index 3817dc0..5fb3a0c 100644
--- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex
+++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex
@@ -1,82 +1,107 @@
%
% tschebyscheff_beispiel.tex
+% Author: Réda Haddouche
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\subsection{Sind Tschebyscheff-Polynome orthogonal zueinander?\label{sub:tschebyscheff-polynome}}
+\subsection{Tschebyscheff-Polynome
+\label{sturmliouville:sub:tschebyscheff-polynome}}
+\rhead{Tschebyscheff-Polynome}
+In diesem Unterkapitel wird anhand der
+Tschebyscheff-Differentialgleichung~\eqref{buch:potenzen:tschebyscheff:dgl}
+gezeigt, dass die Tschebyscheff-Polynome orthogonal zueinander sind.
+Zu diesem Zweck werden die Koeffizientenfunktionen nochmals dargestellt, so dass
+überprüft werden kann, ob die Randbedingungen erfüllt werden.
+Sobald feststeht, ob das Problem regulär oder singulär ist, zeigt eine
+kleine Rechnung, dass die Lösungen orthogonal sind.
+
\subsubsection*{Definition der Koeffizientenfunktion}
-Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfunktionen, die man braucht, schon aufgeliste, und zwar mit
+Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die
+Koeffizientenfunktionen, die man braucht, schon aufgelistet:
\begin{align*}
- w(x) &= \frac{1}{\sqrt{1-x^2}} \\
- p(x) &= \sqrt{1-x^2} \\
- q(x) &= 0
-\end{align*}.
+ w(x) &= \frac{1}{\sqrt{1-x^2}}, \\
+ p(x) &= \sqrt{1-x^2}, \\
+ q(x) &= 0.
+\end{align*}
Da die Sturm-Liouville-Gleichung
\begin{equation}
\label{eq:sturm-liouville-equation-tscheby}
- \frac{d}{dx} (\sqrt{1-x^2} \frac{dy}{dx}) + (0 + \lambda \frac{1}{\sqrt{1-x^2}}) y = 0
+ \frac{d}{dx} (\sqrt{1-x^2} \frac{dy}{dx}) +
+ (0 + \lambda \frac{1}{\sqrt{1-x^2}}) y
+ =
+ 0
\end{equation}
-nun mit den Koeffizientenfunktionen aufgestellt werden kann, bleibt die Frage, ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt.
-
-\subsubsection*{regulär oder singulär?}
-Für das reguläre Problem laut der Definition \ref{def:reguläres_sturm-liouville-problem} muss die funktion $p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und $w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein --- und sie sind es auch.
-Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art mit Hilfe von Hyperbelfunktionen
-\begin{equation}
- T_n(x) = \cos n (\arccos x)
-\end{equation}.
-Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus:
-\begin{equation}
- T_n(x) = \left\{\begin{array}{ll} \cosh (n \arccos x), & x > 1\\
- (-1)^n \cosh (n \arccos (-x)), & x<-1 \end{array}\right.
-\end{equation},
-jedoch ist die Orthogonalität nur auf dem Intervall $[ -1, 1]$ sichergestellt.
-Die nächste Bedingung beinhaltet, dass die Funktion $p(x)$ und $w(x)>0$ sein müssen.
-Die Funktion
-\begin{equation*}
- p(x)^{-1} = \frac{1}{\sqrt{1-x^2}}
-\end{equation*}
-ist die gleiche wie $w(x)$ und erfüllt die Bedingung.
+nun mit den Koeffizientenfunktionen aufgestellt werden kann, bleibt die Frage,
+ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt.
+Zunächst werden jedoch die Randbedingungen betrachtet.
\subsubsection*{Randwertproblem}
Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$.
-Da sich die Polynome nur auf dem Intervall $[ -1,1 ]$ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt.
-Beim einsetzen in die Randbedingung \ref{eq:randbedingungen}, erhält man
+Die Randwerte setzt man $a = -1$ und $b = 1$.
+Beim Einsetzen in die Randbedingung \eqref{sturmliouville:eq:randbedingungen},
+erhält man
\begin{equation}
-\begin{aligned}
- k_a y(-1) + h_a y'(-1) &= 0
- k_b y(-1) + h_b y'(-1) &= 0.
-\end{aligned}
+ \begin{aligned}
+ k_a y(-1) + h_a p(-1) y'(-1) &= 0\\
+ k_b y(1) + h_b p(1) y'(1) &= 0.
+ \end{aligned}
\end{equation}
-Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \label{sub:definiton_der_tschebyscheff-Polynome}).
-Es gibt zwei Arten von Tschebyscheff Polynome: die erste Art $T_n(x)$ und die zweite Art $U_n(x)$.
-Jedoch beachtet man in diesem Kapitel nur die Tschebyscheff Polynome erster Art (\ref{eq:tschebyscheff-polynome}).
-Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die Verifizierung der Randbedingung wählt man $n=2$.
+Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome
+(siehe \ref{sub:definiton_der_tschebyscheff-Polynome}).
+Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die
+Verifizierung der Randbedingung wählt man $n=0$.
Somit erhält man
\begin{equation}
\begin{aligned}
- k_a T_2(-1) + h_a T_{2}'(-1) &= k_a = 0\\
- k_b T_2(1) + h_b T_{2}'(1) &= k_b = 0.
-\end{aligned}
+ k_a T_0(-1) + h_a p(-1) T_{0}'(-1) &= k_a = 0\\
+ k_b T_0(1) + h_b p(1) T_{0}'(1) &= k_b = 0.
+ \end{aligned}
\end{equation}
-Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden.
-Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind.
+Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab können,
+damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, beliebige
+$h_a \ne 0$ und $h_b \ne 0$ gewählt werden.
+Es wurde somit gezeigt, dass die Sturm-Liouville-Randbedingungen erfüllt sind.
+
+\subsubsection*{Handelt es sich um ein reguläres oder singuläres Problem?}
+Für das reguläre Problem muss laut der
+Definition~\ref{sturmliouville:def:reguläres_sturm-liouville-problem} die funktion
+$p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und
+$w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein.
+Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art
+\begin{equation}
+ T_n(x)
+ =
+ \cos n (\arccos x).
+\end{equation}
+Die nächste Bedingung, laut der Definition \ref{sturmliouville:def:reguläres_sturm-liouville-problem}, beinhaltet, dass die Funktion $p(x)$ und $w(x)>0$ sein
+müssen.
+Die Funktion
+\begin{equation*}
+ p(x)^{-1} = \frac{1}{\sqrt{1-x^2}}
+\end{equation*}
+ist die gleiche wie $w(x)$ und erfüllt die Bedingung.
+Es zeigt sich also, dass $p(x)$, $p'(x)$, $q(x)$ und $w(x)$
+die Bedingungen erfüllen.
+Da auch die Randbedingungen erfüllt sind, handelt es sich um ein reguläres Sturm-Liouville-Problem.
+
\begin{beispiel}
- Die Gleichung \ref{eq:skalar-sturm-liouville} mit $y_m = T_1(x)$ und $y_n(x) = T_2(x)$ eingesetzt sowie $a=-1$ und $b = 1$ ergibt
+ In diesem Beispiel wird zuletzt die Orthogonalität der Lösungsfunktion
+ illustriert.
+ Dazu verwendet man das Skalarprodukt
+ \[
+ \int_{a}^{b} w(x) y_m y_n = 0.
+ \]
+ mit $y_m(x) = T_1(x)$ und $y_n(x) = T_2(x)$, sowie $a=-1$ und $b = 1$.
+ Eigesetzt ergibt dies
\[
- \int_{-1}^{1} w(x) x (2x^2-1) dx = 0.
+ \begin{aligned}
+ \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} x (2x^2-1) dx &=
+ \lbrack - \frac{\sqrt{1-x^2}(2x^2+1)}{3}\rbrack_{-1}^{1}\\
+ &= 0.
+ \end{aligned}
\]
+ Somit ist gezeigt, dass $T_1(x)$ und $T_2(x)$ orthogonal sind.
+ Analog kann Orthogonalität für alle $y_n(x)$ und $y_m(x)$ mit $n \ne m$ gezeigt werden.
\end{beispiel}
-
-
-
-
-
-
-
-
-
-
-
-
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
index a72c562..0ef1072 100644
--- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex
+++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
@@ -5,27 +5,32 @@
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\subsection{Wärmeleitung in einem Homogenen Stab}
+\subsection{Wärmeleitung in homogenem Stab}
+\rhead{Wärmeleitung in homogenem Stab}
In diesem Abschnitt wird das Problem der Wärmeleitung in einem homogenen Stab
-betrachtet und wie das Sturm-Liouville-Problem bei der Beschreibung dieses
-physikalischen Phänomenes auftritt.
+betrachtet, angeschaut wie das Sturm-Liouville-Problem bei der Beschreibung
+dieses physikalischen Phänomenes auftritt und hergeleitet wie die Fourierreihe
+als Lösung des Problems zustande kommt.
Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und
-Wärmeleitkoeffizient $\kappa$ betrachtet.
-Es ergibt sich für das Wärmeleitungsproblem
-die partielle Differentialgleichung
+Wärmeleitkoeffizient $\kappa$ betrachtet, dessen initiale Wärmeverteilung durch
+$u(t=0, x)$ gegeben ist.
+Es ergibt sich für das Wärmeleitungsproblem die partielle Differentialgleichung
\begin{equation}
\label{sturmliouville:eq:example-fourier-heat-equation}
- \frac{\partial u}{\partial t} =
- \kappa \frac{\partial^{2}u}{{\partial x}^{2}},
+ \frac{\partial u(t, x)}{\partial t} =
+ \kappa \frac{\partial^{2}u(t, x)}{{\partial x}^{2}},
\end{equation}
-wobei der Stab in diesem Fall auf der $X$-Achse im Intervall $[0,l]$ liegt.
-
-Da diese Differentialgleichung das Problem allgemein für einen homogenen
-Stab beschreibt, werden zusätzliche Bedingungen benötigt, um beispielsweise
-die Lösung für einen Stab zu finden, bei dem die Enden auf konstanter
-Tempreatur gehalten werden.
+wobei der Stab in diesem Fall auf der $x$-Achse im Intervall $[0,l]$ liegt.
+
+Damit die Sturm-Liouville-Theorie auf das
+Problem~\eqref{sturmliouville:eq:example-fourier-heat-equation} angewendet
+werden kann, werden noch Randbedingungen benötigt, welche in Kürze
+vorgestellt werden.
+Aus physikalischer Sicht geben diese Randbedingungen vor, ob die Enden des
+Stabes thermisch isoliert sind oder ob sie auf konstanter Temperatur gehalten
+werden.
%
% Randbedingungen für Stab mit konstanten Endtemperaturen
@@ -52,8 +57,10 @@ als Randbedingungen.
\subsubsection{Randbedingungen für Stab mit isolierten Enden}
-Bei isolierten Enden des Stabes können beliebige Temperaturen für $x = 0$ und
-$x = l$ auftreten. In diesem Fall ist es nicht erlaubt, dass Wärme vom Stab
+Bei isolierten Enden des Stabes können grundsätzlich beliebige Temperaturen für
+$x = 0$ und $x = l$ auftreten.
+Die einzige Einschränkung liefert die initiale Wärmeverteilung $u(0, x)$.
+Im Fall des isolierten Stabes ist es nicht erlaubt, dass Wärme vom Stab
an die Umgebung oder von der Umgebung an den Stab abgegeben wird.
Aus der Physik ist bekannt, dass Wärme immer von der höheren zur tieferen
@@ -78,15 +85,16 @@ als Randbedingungen.
\subsubsection{Lösung der Differenzialgleichung}
-Da die Lösungsfunktion von zwei Variablen abhängig ist, wird als Lösungsansatz
-die Separationsmethode verwendet.
+Da die Lösungsfunktion $u$ von zwei Variablen abhängig ist, wird die
+Gleichung~\eqref{sturmliouville:eq:example-fourier-heat-equation} zunächst
+mittels Separation in zwei gewöhnliche Differentialgleichungen überführt.
Dazu wird
\[
u(t,x)
=
T(t)X(x)
\]
-in die partielle
+in die partielle
Differenzialgleichung~\eqref{sturmliouville:eq:example-fourier-heat-equation}
eingesetzt.
Daraus ergibt sich
@@ -132,9 +140,13 @@ Erfüllen die Randbedingungen des Stab-Problems auch die Randbedingungen des
Sturm-Liouville-Problems, kann bereits die Aussage getroffen werden, dass alle
Lösungen für die Gleichung in $x$ orthogonal sein werden.
-Da die Bedingungen des Stab-Problem nur Anforderungen an $x$ stellen, können
-diese direkt für $X(x)$ übernomen werden. Es gilt also $X(0) = X(l) = 0$.
-Damit die Lösungen von $X$ orthogonal sind, müssen also die Gleichungen
+Da die Bedingungen des Stab-Problems nur Anforderungen an $x$ stellen, können
+diese direkt für $X(x)$ übernomen werden.
+Es gilt also beispielsweise wegen
+\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant},
+dass $X(0) = X(l) = 0$.
+
+Damit die Lösungen von $X$ orthogonal sind, müssen nun also die Gleichungen
\begin{equation}
\begin{aligned}
\label{sturmliouville:eq:example-fourier-randbedingungen}
@@ -152,18 +164,32 @@ erfüllt sein und es muss ausserdem
\end{equation}
gelten.
-Um zu verifizieren, ob die Randbedingungen erfüllt sind, wird zunächst
-$p(x)$
-benötigt.
+Um zu verifizieren, dass die Randbedingungen erfüllt sind, werden also die
+Koeffizientenfunktionen $p(x)$, $q(x)$ und $w(x)$ benötigt.
Dazu wird die Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x}
mit der
-Sturm-Liouville-Form~\eqref{eq:sturm-liouville-equation} verglichen, was zu
-$p(x) = 1$ führt.
+Sturm-Liouville-Form~\eqref{sturmliouville:eq:sturm-liouville-equation}
+verglichen, was zu
+\[
+\begin{aligned}
+ p(x) &= 1 \\
+ q(x) &= 0 \\
+ w(x) &= 1
+\end{aligned}
+\]
+führt.
-Werden nun $p(x)$ und die
+Diese können bereits auf die Bedingungen in
+Definition~\ref{sturmliouville:def:reguläres_sturm-liouville-problem} geprüft
+werden.
+Es ist schnell ersichtlich, dass die ersten drei Kriterien erfüllt sind.
+Werden nun auch noch die Randbedingungen erfüllt, handelt es sich also um ein
+reguläres Sturm-Liouville-Problem.
+
+Es werden nun $p(x)$ und die
Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}
-in \eqref{sturmliouville:eq:example-fourier-randbedingungen} eigesetzt, erhält
-man
+des Stab-Problems in \eqref{sturmliouville:eq:example-fourier-randbedingungen}
+eigesetzt und man erhält
\[
\begin{aligned}
k_a y(0) + h_a y'(0) &= h_a y'(0) = 0 \\
@@ -177,17 +203,20 @@ erfüllt sein und da $y(0) = 0$ und $y(l) = 0$ sind, können belibige $k_a \neq
und $k_b \neq 0$ gewählt werden.
Somit ist gezeigt, dass die Randbedingungen des Stab-Problems für Enden auf
-konstanter Temperatur auch die Sturm-Liouville-Randbedingungen erfüllen und
-alle daraus reultierenden Lösungen orthogonal sind.
+konstanter Temperatur auch die Sturm-Liouville-Randbedingungen erfüllen.
+Daraus folg zunächst, dass es sich um ein reguläres Sturm-Liouville-Problem
+handelt und weiter, dass alle daraus resultierenden Lösungen orthogonal sind.
Analog dazu kann gezeit werden, dass die Randbedingungen für einen Stab mit
-isolierten Enden ebenfalls die Sturm-Liouville-Randbedingungen erfüllen und
+isolierten
+Enden~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}
+ebenfalls die Sturm-Liouville-Randbedingungen erfüllen und
somit auch zu orthogonalen Lösungen führen.
%
% Lösung von X(x), Teil mu
%
-\subsubsection{Lösund der Differentialgleichung in $x$}
+\subsubsection{Lösung der Differentialgleichung in $x$}
Als erstes wird auf die
Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingegangen.
Aufgrund der Struktur der Gleichung
@@ -258,14 +287,15 @@ Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends
und \eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}
benötigt.
-Da die Koeffizienten $A$ und $B$, sowie die Parameter $\alpha$ uns $\beta$ im
-allgemeninen ungleich $0$ sind, müssen die Randbedingungen durch die
+Da die Koeffizienten $A$ und $B$, sowie die Parameter $\alpha$ und $\beta$ im
+allgemeinen ungleich $0$ sind, müssen die Randbedingungen durch die
trigonometrischen Funktionen erfüllt werden.
Es werden nun die
Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}
für einen Stab mit Enden auf konstanter Temperatur in die
Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingesetzt.
+
Betrachten wir zunächst die Bedingung für $x = 0$.
Dies fürht zu
\[
@@ -288,14 +318,13 @@ sich
B \sin(\beta l)
= 0.
\]
-
$\beta$ muss also so gewählt werden, dass $\sin(\beta l) = 0$ gilt.
Es bleibt noch nach $\beta$ aufzulösen:
\[
\begin{aligned}
\sin(\beta l) &= 0 \\
- \beta l &= n \pi \qquad n \in \mathbb{N} \\
- \beta &= \frac{n \pi}{l} \qquad n \in \mathbb{N}
+ \beta l &= n \pi \qquad n \in \mathbb{N}_0 \\
+ \beta &= \frac{n \pi}{l} \qquad n \in \mathbb{N}_0
\end{aligned}
\]
@@ -308,11 +337,11 @@ Ausserdem ist zu bemerken, dass dies auch gleich $-\alpha^{2}$ ist.
Da aber $A = 0$ gilt und der Summand mit $\alpha$ verschwindet, ist dies keine
Verletzung der Randbedingungen.
-Durch alanoges Vorgehen kann nun auch das Problem mit isolierten Enden gelöst
+Durch analoges Vorgehen kann nun auch das Problem mit isolierten Enden gelöst
werden.
-Setzt man nun die
+Setzt man die
Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}
-in $X^{\prime}$ ein, beginnend für $x = 0$. Es ergibt sich
+in $X^{\prime}$ ein, beginnend mit $x = 0$, ergibt sich
\[
X^{\prime}(0)
=
@@ -331,14 +360,14 @@ folgt nun
= 0.
\]
-Wiedrum muss über die $\sin$-Funktion sicher gestellt werden, dass der
+Wiederum muss über die $\sin$-Funktion sicher gestellt werden, dass der
Ausdruck den Randbedingungen entspricht.
Es folgt nun
\[
\begin{aligned}
\sin(\alpha l) &= 0 \\
- \alpha l &= n \pi \qquad n \in \mathbb{N} \\
- \alpha &= \frac{n \pi}{l} \qquad n \in \mathbb{N}
+ \alpha l &= n \pi \qquad n \in \mathbb{N}_0 \\
+ \alpha &= \frac{n \pi}{l} \qquad n \in \mathbb{N}_0
\end{aligned}
\]
und somit
@@ -347,7 +376,7 @@ und somit
\]
Es ergibt sich also sowohl für einen Stab mit Enden auf konstanter Temperatur
-wie auch mit isolierten Enden
+wie auch für den Stab mit isolierten Enden
\begin{equation}
\label{sturmliouville:eq:example-fourier-mu-solution}
\mu
@@ -355,16 +384,32 @@ wie auch mit isolierten Enden
-\frac{n^{2}\pi^{2}}{l^{2}}.
\end{equation}
-%
-% Lösung von X(x), Teil: Koeffizienten a_n und b_n mittels skalarprodukt.
-%
+\subsubsection{Fourierreihe als Lösung}
-Bisher wurde über die Koeffizienten $A$ und $B$ noch nicht viel ausgesagt.
-Zunächst ist wegen vorhergehender Rechnung ersichtlich, dass es sich bei
-$A$ und $B$ nicht um einzelne Koeffizienten handelt.
-Stattdessen können die Koeffizienten für jedes $n \in \mathbb{N}$
-unterschiedlich sein.
-Die Lösung $X(x)$ wird nun umgeschrieben zu
+Das Resultat~\eqref{sturmliouville:eq:example-fourier-mu-solution} gibt nun
+wegen der neuen Variablen $n \in \mathbb{N}_0$ vor, dass es potenziell
+unendlich viele Lösungen gibt.
+Dies bedeutet auch, dass es nicht ein $A$ und ein $B$ gibt, sondern einen
+Koeffizienten für jede Lösungsfunktion.
+Wir schreiben deshalb den Lösungsansatz zur Linearkombination
+\[
+ X(x)
+ =
+ \sum_{n = 0}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right)
+ +
+ \sum_{n = 0}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right)
+\]
+aus allen möglichen Lösungen um.
+
+Als nächstes werden noch die Summanden für $n = 0$ aus den Summen herausgezogen.
+Da
+\[
+ \begin{aligned}
+ a_0 \cos\left(\frac{0 \pi}{l}\right) &= a_0 \\
+ b_0 \sin\left(\frac{0 \pi}{l}\right) &= 0
+ \end{aligned}
+\]
+gilt, endet man somit bei
\[
X(x)
=
@@ -374,10 +419,33 @@ Die Lösung $X(x)$ wird nun umgeschrieben zu
+
\sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right).
\]
+Dies ist die allgemeine Fourierreihe, welche unsere Stab-Probleme löst.
+Wie zuvor bereits erwähnt, wissen wir dass sämtliche Lösungsfunktionen
+orthogonal zueinander sind, da es sich hier um die Lösung eines
+Sturm-Liouville-Problems handelt.
+Es gilt also
+\[
+\begin{aligned}
+ \int_{-l}^{l}\cos\left(\frac{n \pi}{l}x\right)
+ \cos\left(\frac{m \pi}{l}x\right)dx
+ &= 0 \qquad n \neq m \\
+ \int_{-l}^{l}\sin\left(\frac{n \pi}{l}x\right)
+ \sin\left(\frac{m \pi}{l}x\right)dx
+ &= 0 \qquad n \neq m \\
+ \int_{-l}^{l}\cos\left(\frac{n \pi}{l}x\right)
+ \sin\left(\frac{m \pi}{l}x\right)dx
+ &= 0.
+\end{aligned}
+\]
+
+\subsubsection{Berechnung der Fourierkoeffizienten}
-Um eine eindeutige Lösung für $X(x)$ zu erhalten werden noch weitere
-Bedingungen benötigt.
-Diese sind die Startbedingungen oder $u(0, x) = X(x)$ für $t = 0$.
+%
+% Lösung von X(x), Teil: Koeffizienten a_n und b_n mittels skalarprodukt.
+%
+
+Um eine eindeutige Lösung für $X(x)$ zu erhalten wird nun die initiale
+Wärmeverteilung oder $u(0, x) = X(x)$ für $t = 0$ benötigt.
Es gilt also nun die Gleichung
\begin{equation}
\label{sturmliouville:eq:example-fourier-initial-conditions}
@@ -417,13 +485,13 @@ gebildet:
Bevor diese Form in die Integralform umgeschrieben werden kann, muss überlegt
sein, welche Integralgrenzen zu verwenden sind.
In diesem Fall haben die $\sin$ und $\cos$ Terme beispielsweise keine ganze
-Periode im Intervall $x \in [0, l]$ für ungerade $n$ und $m$.
+Periode im Intervall $x \in [0, l]$ für ungerade $n$ und ungerade $m$.
Um die Skalarprodukte aber korrekt zu berechnen, muss über ein ganzzahliges
Vielfaches der Periode der trigonometrischen Funktionen integriert werden.
Dazu werden die Integralgrenzen $-l$ und $l$ verwendet und es werden ausserdem
neue Funktionen $\hat{u}_c(0, x)$ für die Berechnung mit Cosinus und
$\hat{u}_s(0, x)$ für die Berechnung mit Sinus angenomen, welche $u(0, t)$
-gerade, respektive ungerade auf $[-l, l]$ fortsetzen:
+gerade, respektive ungerade auf $[-l, 0]$ fortsetzen:
\[
\begin{aligned}
\hat{u}_c(0, x)
@@ -444,22 +512,23 @@ gerade, respektive ungerade auf $[-l, l]$ fortsetzen:
\end{aligned}
\]
-Die Konsequenz davon ist, dass nun das Resultat der Integrale um den Faktor zwei
-skalliert wurde, also gilt nun
+Diese Funktionen wurden gerade so gewählt, dass nun das Resultat der Integrale
+um den Faktor zwei skalliert wurde.
+Es gilt also
\[
-\begin{aligned}
\int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
- &=
+ =
2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
- \\
+\]
+und
+\[
\int_{-l}^{l}\hat{u}_s(0, x)\sin\left(\frac{m \pi}{l}x\right)dx
- &=
+ =
2\int_{0}^{l}u(0, x)\sin\left(\frac{m \pi}{l}x\right)dx.
-\end{aligned}
\]
-Zunächst wird nun das Skalaprodukt~\eqref{sturmliouville:eq:dot-product-cosine}
-berechnet:
+Als nächstes wird nun das
+Skalaprodukt~\eqref{sturmliouville:eq:dot-product-cosine} berechnet:
\[
\begin{aligned}
\int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
@@ -508,13 +577,15 @@ orthogonal zueinander stehen und
\]
da Sinus- und Cosinus-Funktionen ebenfalls orthogonal zueinander sind.
-Es bleibt also lediglich der Summand für $a_m$ stehen, was die Gleichung zu
+Es bleibt also lediglich der Summand mit $a_m$ stehen, was die Gleichung zu
\[
2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
=
a_m\int_{-l}^{l}\cos^2\left(\frac{m\pi}{l}x\right)dx
\]
-vereinfacht. Im nächsten Schritt wird nun das Integral auf der rechten Seite
+vereinfacht.
+
+Im nächsten Schritt wird nun das Integral auf der rechten Seite
berechnet und dann nach $a_m$ aufgelöst. Am einnfachsten geht dies, wenn zuerst
mit $u = \frac{m \pi}{l}x$ substituiert wird:
\[
@@ -552,7 +623,7 @@ $ \sin\left(\frac{m \pi}{l}x\right) $ gezeigt werden, dass
gilt.
Etwas anders ist es allerdings bei $a_0$.
-Wie der Name bereits suggeriert, handelt es sich hierbei um den Koeffizienten
+Wie zuvor bereits erwähnt, handelt es sich hierbei um den Koeffizienten
zur Basisfunktion $\cos\left(\frac{0 \pi}{l}x\right)$ beziehungsweise der
konstanten Funktion $1$.
Um einen Ausdruck für $a_0$ zu erhalten, wird wiederum auf beiden Seiten
@@ -580,14 +651,14 @@ Skalarprodukt mit der konstanten Basisfunktion $1$ gebildet:
\]
Hier fallen nun alle Terme, die $\sin$ oder $\cos$ beinhalten weg, da jeweils
-über ein Vielfaches der Periode integriert wird.
+über ein ganzzahliges Vielfaches der Periode integriert wird.
Es bleibt also noch
\[
2\int_{0}^{l}u(0, x)dx
=
- a_0 \int_{-l}^{l}dx
+ a_0 \int_{-l}^{l}dx,
\]
-, was sich wie folgt nach $a_0$ auflösen lässt:
+was sich wie folgt nach $a_0$ auflösen lässt:
\[
\begin{aligned}
2\int_{0}^{l}u(0, x)dx
@@ -616,13 +687,19 @@ Es bleibt also noch
\subsubsection{Lösung der Differentialgleichung in $t$}
Zuletzt wird die zweite Gleichung der
Separation~\eqref{sturmliouville:eq:example-fourier-separated-t} betrachtet.
-Diese wird über das charakteristische Polynom
+Dazu betrachtet man das charakteristische Polynom
\[
\lambda - \kappa \mu
=
0
\]
-gelöst.
+der Gleichung
+\[
+ T^{\prime}(t) - \kappa \mu T(t)
+ =
+ 0
+\]
+und löst dieses.
Es ist direkt ersichtlich, dass $\lambda = \kappa \mu$ gelten muss, was zur
Lösung