diff options
author | Nicolas Tobler <nicolas.tobler@ost.ch> | 2022-08-14 15:40:49 +0200 |
---|---|---|
committer | Nicolas Tobler <nicolas.tobler@ost.ch> | 2022-08-14 15:40:49 +0200 |
commit | 14af017af260d31f8e254e158aaa8dc285890006 (patch) | |
tree | 183cbb155f014a433cef63127e9923068cf68063 /buch/papers/zeta/einleitung.tex | |
parent | corrections (diff) | |
parent | Merge pull request #47 from f1bi1n/master (diff) | |
download | SeminarSpezielleFunktionen-14af017af260d31f8e254e158aaa8dc285890006.tar.gz SeminarSpezielleFunktionen-14af017af260d31f8e254e158aaa8dc285890006.zip |
Merge branch 'master' of https://github.com/AndreasFMueller/SeminarSpezielleFunktionen
Diffstat (limited to '')
-rw-r--r-- | buch/papers/zeta/einleitung.tex | 32 |
1 files changed, 31 insertions, 1 deletions
diff --git a/buch/papers/zeta/einleitung.tex b/buch/papers/zeta/einleitung.tex index 3b70531..828678d 100644 --- a/buch/papers/zeta/einleitung.tex +++ b/buch/papers/zeta/einleitung.tex @@ -1,11 +1,41 @@ \section{Einleitung} \label{zeta:section:einleitung} \rhead{Einleitung} -Die Riemannsche Zetafunktion ist für alle komplexe $s$ mit $\Re(s) > 1$ definiert als +Die Riemannsche Zetafunktion $\zeta(s)$ ist für alle komplexe $s$ mit $\Re(s) > 1$ definiert als \begin{equation}\label{zeta:equation1} \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}. \end{equation} +Die Zetafunktion ist bekannt als Bestandteil der Riemannschen Vermutung, welche besagt das alle nichttrivialen Nullstellen der Zetafunktion einen Realteil von $\frac{1}{2}$ haben. +Mithilfe dieser Vermutung kann eine gute Annäherung an die Primzahlfunktion gefunden werden. +Die Primzahlfunktion steigt immer an, sobald eine Primzahl vorkommt. +Eine Darstellung davon ist in Abbildung \ref{fig:zeta:primzahlfunktion} zu finden. +Die Riemannsche Vermutung ist eines der ungelösten Millennium-Probleme der Mathematik, auf deren Lösung eine Belohnung von einer Million Dollar ausgesetzt ist \cite{zeta:online:millennium}. +Auf eine genauere Beschreibung der Riemannschen Vermutung wird im Rahmen dieses Papers nicht eingegangen. +\begin{figure} + \centering + \input{papers/zeta/images/primzahlfunktion2.tex} + \caption{Die Primzahlfunktion von $0$ bis $30$.} + \label{fig:zeta:primzahlfunktion} +\end{figure} +Der grundlegende Zusammenhang der Primzahlen und der Zetafunktion wird im ersten Abschnitt \ref{zeta:section:eulerprodukt} über das Eulerprodukt gezeigt. +Danach folgt die Verbindung zur bereits bekannten Gammafunktion in Abschnitt \ref{zeta:section:zusammenhang_mit_gammafunktion}. +Schlussendlich folgt die Beschreibung der analytischen Fortsetzung die gesamte komplexe Ebene in Abschnitt \ref{zeta:section:analytische_fortsetzung}. + +Diese analytische Fortsetzung wird für die Riemannsche Vermutung benötigt, ermöglicht aber auch andere interessante Aussagen. +So findet sich zum Beispiel immer wieder die aberwitzige Behauptung, das die Summe aller natürlichen Zahlen +\begin{equation*} + \sum_{n=1}^{\infty} n + = + \sum_{n=1}^{\infty} + \frac{1}{n^{-1}} + = + -\frac{1}{12} +\end{equation*} +sei. +Obwohl diese Behauptung offensichtlich falsch ist, hat sie doch ihre Berechtigung, wie durch die analytische Fortsetzung gezeigt werden wird. + +Die folgenden mathematischen Herleitungen sind, sofern nicht anders gekennzeichnet, eigene Darstellungen basierend auf den überaus umfangreichen Wikipedia-Artikeln auf Deutsch \cite{zeta:online:wiki_de} und Englisch \cite{zeta:online:wiki_en} sowie einer Video-Playlist \cite{zeta:online:mryoumath}. |