diff options
author | Samuel Niederer <43746162+samnied@users.noreply.github.com> | 2022-07-24 12:17:00 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-07-24 12:17:00 +0200 |
commit | efe7c35759afb5cbae3c1683873c5159be0be09f (patch) | |
tree | 84f2e8510132352f9943bddc577ccf32cd46f2dc /buch/papers/zeta/zeta_gamma.tex | |
parent | add current work (diff) | |
parent | Merge pull request #26 from p1mueller/master (diff) | |
download | SeminarSpezielleFunktionen-efe7c35759afb5cbae3c1683873c5159be0be09f.tar.gz SeminarSpezielleFunktionen-efe7c35759afb5cbae3c1683873c5159be0be09f.zip |
Merge branch 'AndreasFMueller:master' into master
Diffstat (limited to '')
-rw-r--r-- | buch/papers/zeta/zeta_gamma.tex | 61 |
1 files changed, 61 insertions, 0 deletions
diff --git a/buch/papers/zeta/zeta_gamma.tex b/buch/papers/zeta/zeta_gamma.tex new file mode 100644 index 0000000..db41676 --- /dev/null +++ b/buch/papers/zeta/zeta_gamma.tex @@ -0,0 +1,61 @@ +\section{Zusammenhang mit der Gammafunktion} \label{zeta:section:zusammenhang_mit_gammafunktion} +\rhead{Zusammenhang mit der Gammafunktion} + +In diesem Abschnitt wird gezeigt, wie sich die Zetafunktion durch die Gammafunktion $\Gamma(s)$ ausdrücken lässt. +Dieser Zusammenhang der Art $\zeta(s) = f(\Gamma(s))$ ist nicht nur interessant, er wird später auch für die Herleitung der analytischen Fortsetzung gebraucht. + +Wir erinnern uns an die Definition der Gammafunktion in \eqref{buch:rekursion:gamma:integralbeweis} +\begin{equation*} + \Gamma(s) + = + \int_0^{\infty} t^{s-1} e^{-t} \,dt, +\end{equation*} +wobei die Notation an die Zetafunktion angepasst ist. +Durch die Substitution von $t$ mit $t = nu$ und $dt = n\,du$ wird daraus +\begin{align*} + \Gamma(s) + &= + \int_0^{\infty} n^{s-1}u^{s-1} e^{-nu} n \,du \\ + &= + \int_0^{\infty} n^s u^{s-1} e^{-nu} \,du. +\end{align*} +Durch Division mit durch $n^s$ ergibt sich die Quotienten +\begin{equation*} + \frac{\Gamma(s)}{n^s} + = + \int_0^{\infty} u^{s-1} e^{-nu} \,du, +\end{equation*} +welche sich zur Zetafunktion summieren +\begin{equation} + \sum_{n=1}^{\infty} \frac{\Gamma(s)}{n^s} + = + \Gamma(s) \zeta(s) + = + \int_0^{\infty} u^{s-1} + \sum_{n=1}^{\infty}e^{-nu} + \,du. + \label{zeta:equation:zeta_gamma1} +\end{equation} +Die Summe über $e^{-nu}$ können wir als geometrische Reihe schreiben und erhalten +\begin{align} + \sum_{n=1}^{\infty}\left(e^{-u}\right)^n + &= + \sum_{n=0}^{\infty}\left(e^{-u}\right)^n + - + 1 + \\ + &= + \frac{1}{1 - e^{-u}} - 1 + \\ + &= + \frac{1}{e^u - 1}. +\end{align} +Wenn wir dieses Resultat einsetzen in \eqref{zeta:equation:zeta_gamma1} und durch $\Gamma(s)$ teilen, erhalten wir den gewünschten Zusammenhang +\begin{equation}\label{zeta:equation:zeta_gamma_final} + \zeta(s) + = + \frac{1}{\Gamma(s)} + \int_0^{\infty} + \frac{u^{s-1}}{e^u -1} + du \qed +\end{equation} |