diff options
author | runterer <r.unterer@gmx.ch> | 2022-08-06 19:21:47 +0200 |
---|---|---|
committer | runterer <r.unterer@gmx.ch> | 2022-08-06 19:21:47 +0200 |
commit | 79c0198f5082851ce28945e8278ab01b82496901 (patch) | |
tree | 1a060fe906bd8c521af857e651aa6aa3477c9a58 /buch/papers/zeta | |
parent | simple corrections (diff) | |
download | SeminarSpezielleFunktionen-79c0198f5082851ce28945e8278ab01b82496901.tar.gz SeminarSpezielleFunktionen-79c0198f5082851ce28945e8278ab01b82496901.zip |
restructured 19.4.2
Diffstat (limited to '')
-rw-r--r-- | buch/papers/zeta/analytic_continuation.tex | 364 |
1 files changed, 203 insertions, 161 deletions
diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex index 8484b28..a45791e 100644 --- a/buch/papers/zeta/analytic_continuation.tex +++ b/buch/papers/zeta/analytic_continuation.tex @@ -110,78 +110,24 @@ Analog zum Abschnitt \ref{zeta:section:zusammenhang_mit_gammafunktion} teilen wi \,dx, \end{equation} und finden $\zeta(s)$ durch die Summenbildung $\sum_{n=1}^{\infty}$ -\begin{equation} +\begin{align} \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} \zeta(s) - = + &= \int_0^{\infty} x^{\frac{s}{2}-1} \sum_{n=1}^{\infty} e^{-\pi n^2 x} - \,dx. \label{zeta:equation:integral1} -\end{equation} -Die Summe kürzen wir ab als $\psi(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$. -Im Abschnitt \ref{zeta:subsec:poisson_summation} wird die poissonsche Summenformel $\sum f(n) = \sum F(n)$ bewiesen. -In unserem Problem ist $f(n) = e^{-\pi n^2 x}$ und die zugehörige Fouriertransformation $F(n)$ ist -\begin{equation} - F(n) - = - \mathcal{F} - ( - e^{-\pi n^2 x} - ) - = - \frac{1}{\sqrt{x}} - e^{\frac{-n^2 \pi}{x}}. -\end{equation} -Dadurch ergibt sich -\begin{equation}\label{zeta:equation:psi} - \sum_{n=-\infty}^{\infty} - e^{-\pi n^2 x} - = - \frac{1}{\sqrt{x}} - \sum_{n=-\infty}^{\infty} - e^{\frac{-n^2 \pi}{x}}, -\end{equation} -wobei wir die Summen so verändern müssen, dass sie bei $n=1$ beginnen und wir $\psi(x)$ erhalten als -\begin{align} - 2 - \sum_{n=1}^{\infty} - e^{-\pi n^2 x} - + - 1 - &= - \frac{1}{\sqrt{x}} - \Biggl( - 2 - \sum_{n=1}^{\infty} - e^{\frac{-n^2 \pi}{x}} - + - 1 - \Biggr) + \,dx\label{zeta:equation:integral1} \\ - 2 - \psi(x) - + - 1 &= - \frac{1}{\sqrt{x}} - \left( - 2 - \psi\left(\frac{1}{x}\right) - + - 1 - \right) - \\ + \int_0^{\infty} + x^{\frac{s}{2}-1} \psi(x) - &= - - \frac{1}{2} - + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}} - + \frac{1}{2 \sqrt{x}}.\label{zeta:equation:psi} + \,dx, \end{align} -Diese Gleichung wird später wichtig werden. - -Zunächst teilen wir nun das Integral aus \eqref{zeta:equation:integral1} auf als +wobei die Summe $\sum_{n=1}^{\infty} e^{-\pi n^2 x}$ als $\psi(x)$ abgekürzt wird. +Zunächst teilen wir nun das Integral auf in zwei Teile \begin{equation}\label{zeta:equation:integral2} \int_0^{\infty} x^{\frac{s}{2}-1} @@ -202,100 +148,11 @@ Zunächst teilen wir nun das Integral aus \eqref{zeta:equation:integral1} auf al \,dx }_{I_2} = - I_1 + I_2, -\end{equation} -wobei wir uns zunächst auf den ersten Teil $I_1$ konzentrieren werden. -Dabei setzen wir die Definition von $\psi(x)$ aus \eqref{zeta:equation:psi} ein und erhalten -\begin{align} - I_1 - = - \int_0^{1} - x^{\frac{s}{2}-1} - \psi(x) - \,dx - &= - \int_0^{1} - x^{\frac{s}{2}-1} - \Biggl( - - \frac{1}{2} - + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}} - + \frac{1}{2 \sqrt{x}} - \Biggr) - \,dx - \\ - &= - \int_0^{1} - x^{\frac{s}{2}-\frac{3}{2}} - \psi \left( \frac{1}{x} \right) - + \frac{1}{2} - \biggl( - x^{\frac{s}{2}-\frac{3}{2}} - - - x^{\frac{s}{2}-1} - \biggl) - \,dx - \\ - &= - \underbrace{ - \int_0^{1} - x^{\frac{s}{2}-\frac{3}{2}} - \psi \left( \frac{1}{x} \right) - \,dx - }_{I_3} - + - \underbrace{ - \frac{1}{2} - \int_0^1 - x^{\frac{s}{2}-\frac{3}{2}} - - - x^{\frac{s}{2}-1} - \,dx - }_{I_4}. \label{zeta:equation:integral3} -\end{align} -Darin kann das zweite Integral $I_4$ gelöst werden als -\begin{equation} - I_4 - = - \frac{1}{2} - \int_0^1 - x^{\frac{s}{2}-\frac{3}{2}} - - - x^{\frac{s}{2}-1} - \,dx - = - \frac{1}{s(s-1)}. + I_1 + I_2. \end{equation} -Das erste Integral $I_3$ aus \eqref{zeta:equation:integral3} mit $\psi \left(\frac{1}{x} \right)$ ist nicht lösbar in dieser Form. -Deshalb substituieren wir $x = \frac{1}{u}$ und $dx = -\frac{1}{u^2}du$. -Die untere Integralgrenze wechselt ebenfalls zu $x_0 = 0 \rightarrow u_0 = \infty$. -Dies ergibt -\begin{align} - I_3 - = - \int_{\infty}^{1} - \left( - \frac{1}{u} - \right)^{\frac{s}{2}-\frac{3}{2}} - \psi(u) - \frac{-du}{u^2} - &= - \int_{1}^{\infty} - \left( - \frac{1}{u} - \right)^{\frac{s}{2}-\frac{3}{2}} - \psi(u) - \frac{du}{u^2} - \\ - &= - \int_{1}^{\infty} - x^{(-1) \left(\frac{s}{2}+\frac{1}{2}\right)} - \psi(x) - \,dx, -\end{align} -wobei wir durch Multiplikation mit $(-1)$ die Integralgrenzen tauschen dürfen. -Es ist zu beachten das diese Grenzen nun identisch mit den Grenzen des zweiten Integrals $I_2$ von \eqref{zeta:equation:integral2} sind. -Wir setzen beide Lösungen in Gleichung \eqref{zeta:equation:integral3} ein und erhalten -\begin{equation} +Abschnitt \ref{zeta:subsubsec:intcal} beschreibt wie das Integral $I_1$ umgestellt werden kann um ebenfalls die Integrationsgrenzen $1$ und $\infty$ zu bekommen. +Die Lösung, beschrieben in Gleichung \eqref{zeta:equation:intcal_res}, lautet +\begin{equation*} I_1 = \int_0^{1} @@ -309,8 +166,8 @@ Wir setzen beide Lösungen in Gleichung \eqref{zeta:equation:integral3} ein und \,dx + \frac{1}{s(s-1)}. -\end{equation} -Dieses Resultat setzen wir wiederum ein in \eqref{zeta:equation:integral2}, um schlussendlich +\end{equation*} +Dieses Resultat setzen wir nun ein in \eqref{zeta:equation:integral2}, um schlussendlich \begin{align} \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} \zeta(s) @@ -375,12 +232,14 @@ Somit haben wir die analytische Fortsetzung gefunden als \end{equation} was einer Spiegelung an der $\Re(s) = \frac{1}{2}$ Geraden entspricht. Eine ganz ähnliche Spiegelungseigenschaft wurde bereits in Kapitel \ref{buch:funktionentheorie:subsection:gammareflektion} für die Gammafunktion gefunden. -%TODO Definitionen und Gleichungen klarer unterscheiden -\subsection{Poissonsche Summenformel} \label{zeta:subsec:poisson_summation} +\subsection{Berechnung des Integrals $I_1 = \int_0^{1} x^{\frac{s}{2}-1} \psi(x) \,dx$} \label{zeta:subsubsec:intcal} -Der Beweis für Gleichung \eqref{zeta:equation:psi} folgt direkt durch die poissonsche Summenformel. -Um diese zu beweisen, berechnen wir zunächst die Fourierreihe der Dirac Delta Funktion. +Ziel dieses Abschnittes ist es, zu zeigen wie das Integral $I_1$ aus Gleichung \eqref{zeta:equation:integral2} durch ein neues Integral mit den Integrationsgrenzen $1$ und $\infty$ ersetzt werden kann. +Da dieser Schritt ziemlich aufwendig ist, wird er hier in einem eigenen Abschnitt behandelt. +Zunächst wird die poissonsche Summenformel hergeleitet, da diese verwendet werden kann um $\psi(x)$ zu berechnen. + +Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourierreihe der Dirac Delta Funktion. \begin{lemma} Die Fourierreihe der periodischen Dirac $\delta$ Funktion $\sum \delta(x - 2\pi k)$ ist @@ -492,3 +351,186 @@ Um diese zu beweisen, berechnen wir zunächst die Fourierreihe der Dirac Delta F f(k). \end{equation} \end{proof} + +Erinnern wir uns nochmals an unser Integral aus Gleichung \eqref{zeta:equation:integral2} +\begin{align*} + I_1 + &= + \int_0^{1} + x^{\frac{s}{2}-1} + \sum_{n=1}^{\infty} + e^{-\pi n^2 x} + \,dx + \\ + &= + \int_0^{1} + x^{\frac{s}{2}-1} + \psi(x) + \,dx + . +\end{align*} + +Wir wenden nun diese poissonsche Summenformel $\sum f(n) = \sum F(n)$ an auf $\psi(x)$. +In unserem Problem ist also $f(n) = e^{-\pi n^2 x}$ und die zugehörige Fouriertransformation $F(n)$ ist +\begin{equation} + F(n) + = + \mathcal{F} + ( + e^{-\pi n^2 x} + ) + = + \frac{1}{\sqrt{x}} + e^{\frac{-n^2 \pi}{x}}. +\end{equation} +Dadurch ergibt sich +\begin{equation}\label{zeta:equation:psi} + \sum_{n=-\infty}^{\infty} + e^{-\pi n^2 x} + = + \frac{1}{\sqrt{x}} + \sum_{n=-\infty}^{\infty} + e^{\frac{-n^2 \pi}{x}}, +\end{equation} +wobei wir die Summen so verändern müssen, dass sie bei $n=1$ beginnen und wir $\psi(x)$ erhalten als +\begin{align} + 2 + \sum_{n=1}^{\infty} + e^{-\pi n^2 x} + + + 1 + &= + \frac{1}{\sqrt{x}} + \Biggl( + 2 + \sum_{n=1}^{\infty} + e^{\frac{-n^2 \pi}{x}} + + + 1 + \Biggr) + \\ + 2 + \psi(x) + + + 1 + &= + \frac{1}{\sqrt{x}} + \left( + 2 + \psi\left(\frac{1}{x}\right) + + + 1 + \right) + \\ + \psi(x) + &= + - \frac{1}{2} + + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}} + + \frac{1}{2 \sqrt{x}}.\label{zeta:equation:psi} +\end{align} +Diese Form von $\psi(x)$ eingesetzt in $I_1$ ergibt +\begin{align} + I_1 + = + \int_0^{1} + x^{\frac{s}{2}-1} + \psi(x) + \,dx + &= + \int_0^{1} + x^{\frac{s}{2}-1} + \Biggl( + - \frac{1}{2} + + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}} + + \frac{1}{2 \sqrt{x}} + \Biggr) + \,dx + \\ + &= + \int_0^{1} + x^{\frac{s}{2}-\frac{3}{2}} + \psi \left( \frac{1}{x} \right) + + \frac{1}{2} + \biggl( + x^{\frac{s}{2}-\frac{3}{2}} + - + x^{\frac{s}{2}-1} + \biggl) + \,dx + \\ + &= + \underbrace{ + \int_0^{1} + x^{\frac{s}{2}-\frac{3}{2}} + \psi \left( \frac{1}{x} \right) + \,dx + }_{I_3} + + + \underbrace{ + \frac{1}{2} + \int_0^1 + x^{\frac{s}{2}-\frac{3}{2}} + - + x^{\frac{s}{2}-1} + \,dx + }_{I_4}. \label{zeta:equation:integral3} +\end{align} +Darin kann für das zweite Integral $I_4$ eine Lösung gefunden werden als +\begin{equation} + I_4 + = + \frac{1}{2} + \int_0^1 + x^{\frac{s}{2}-\frac{3}{2}} + - + x^{\frac{s}{2}-1} + \,dx + = + \frac{1}{s(s-1)}. +\end{equation} +Das erste Integral $I_3$ aus \eqref{zeta:equation:integral3} mit $\psi \left(\frac{1}{x} \right)$ ist hingegen nicht lösbar in dieser Form. +Deshalb substituieren wir $x = \frac{1}{u}$ und $dx = -\frac{1}{u^2}du$. +Die untere Integralgrenze wechselt ebenfalls zu $x_0 = 0 \rightarrow u_0 = \infty$. +Dies ergibt +\begin{align} + I_3 + = + \int_{\infty}^{1} + \left( + \frac{1}{u} + \right)^{\frac{s}{2}-\frac{3}{2}} + \psi(u) + \frac{-du}{u^2} + &= + \int_{1}^{\infty} + \left( + \frac{1}{u} + \right)^{\frac{s}{2}-\frac{3}{2}} + \psi(u) + \frac{du}{u^2} + \\ + &= + \int_{1}^{\infty} + x^{(-1) \left(\frac{s}{2}+\frac{1}{2}\right)} + \psi(x) + \,dx, +\end{align} +wobei wir durch Multiplikation mit $(-1)$ die Integralgrenzen tauschen dürfen. +Es ist zu beachten das diese Grenzen nun identisch mit den Grenzen des zweiten Integrals $I_2$ von \eqref{zeta:equation:integral2} sind. +Wir setzen beide Lösungen in Gleichung \eqref{zeta:equation:integral3} ein und erhalten +\begin{equation} + I_1 + = + \int_0^{1} + x^{\frac{s}{2}-1} + \psi(x) + \,dx + = + \int_{1}^{\infty} + x^{(-1) \left(\frac{s}{2}+\frac{1}{2}\right)} + \psi(x) + \,dx + + + \frac{1}{s(s-1)}. \label{zeta:equation:intcal_res} +\end{equation} +Diese Form des Integrals $I_1$ hat die gewünschten Integrationsgrenzen und ein essentieller Bestandteil des Beweises der Funktionalgleichung in Abschnitt \ref{zeta:subsection:auf_ganz}. |