diff options
author | Erik Löffler <100943759+erik-loeffler@users.noreply.github.com> | 2022-08-25 22:36:30 +0200 |
---|---|---|
committer | Erik Löffler <100943759+erik-loeffler@users.noreply.github.com> | 2022-08-25 22:36:30 +0200 |
commit | 08f2fa49aebb5880f5b510196f693f4cb68d439d (patch) | |
tree | 213ddf86197674aad306df2552d96d0e6c4b92ee /buch/papers | |
parent | Removed some TODO's. (diff) | |
download | SeminarSpezielleFunktionen-08f2fa49aebb5880f5b510196f693f4cb68d439d.tar.gz SeminarSpezielleFunktionen-08f2fa49aebb5880f5b510196f693f4cb68d439d.zip |
Final corrections before pull request.
Diffstat (limited to '')
-rw-r--r-- | buch/papers/sturmliouville/eigenschaften.tex | 87 | ||||
-rw-r--r-- | buch/papers/sturmliouville/waermeleitung_beispiel.tex | 67 |
2 files changed, 37 insertions, 117 deletions
diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index cef276b..8616172 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -116,90 +116,5 @@ Bei einem regulären Sturm-Liouville-Problem ist diese Eigenschaft für $L$ gegeben und wird im Weiteren nicht näher diskutiert. Es kann nun also dank dem Spektralsatz darauf geschlossen werden, dass die -Lösungsfunktion $y$ eises regulären Sturm-Liouville-Problems eine +Lösungsfunktion $y$ eines regulären Sturm-Liouville-Problems eine Linearkombination aus orthogonalen Basisfunktionen sein muss. - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OLD section %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -\iffalse - -\section{OLD: Eigenschaften von Lösungen -%\label{sturmliouville:section:solution-properties} -} -\rhead{Eigenschaften von Lösungen} - -Im weiteren werden nun die Eigenschaften der Lösungen eines -Sturm-Liouville-Problems diskutiert und aufgezeigt, wie diese Eigenschaften -zustande kommen. - -Dazu wird der Operator $L_0$ welcher bereits in -Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} betrachtet -wurde, noch etwas genauer angeschaut. -Es wird also im Folgenden -\[ - L_0 - = - -\frac{d}{dx}p(x)\frac{d}{dx} -\] -zusammen mit den Randbedingungen -\[ - \begin{aligned} - k_a y(a) + h_a p(a) y'(a) &= 0 \\ - k_b y(b) + h_b p(b) y'(b) &= 0 - \end{aligned} -\] -verwendet. -Wie im Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} bereits -gezeigt, resultieren die Randbedingungen aus der Anforderung den Operator $L_0$ -selbsadjungiert zu machen. -Es wurde allerdings noch nicht darauf eingegangen, welche Eigenschaften dies -für die Lösungen des Sturm-Liouville-Problems zur Folge hat. - -\subsubsection{Exkurs zum Spektralsatz} - -Um zu verstehen welche Eigenschaften der selbstadjungierte Operator $L_0$ in -den Lösungen hervorbringt, wird der Spektralsatz benötigt. - -Dieser wird in der linearen Algebra oft verwendet um zu zeigen, dass eine Matrix -diagonalisierbar ist, beziehungsweise dass eine Orthonormalbasis existiert. - -Im Fall einer gegebenen $n\times n$-Matrix $A$ mit reellen Einträgen wird dazu -zunächst gezeigt, dass $A$ selbstadjungiert ist, also dass -\[ - \langle Av, w \rangle - = - \langle v, Aw \rangle -\] -für $ v, w \in \mathbb{R}^n$ gilt. -Ist dies der Fall, kann die Aussage des Spektralsatzes -\cite{sturmliouville:spektralsatz-wiki} verwended werden. -Daraus folgt dann, dass eine Orthonormalbasis aus Eigenvektoren existiert, -wenn $A$ nur Eigenwerte aus $\mathbb{R}$ besitzt. - -Dies ist allerdings nicht die Einzige Version des Spektralsatzes. -Unter anderen gibt es den Spektralsatz für kompakte Operatoren -\cite{sturmliouville:spektralsatz-wiki}, welcher für das -Sturm-Liouville-Problem von Bedeutung ist. -Welche Voraussetzungen erfüllt sein müssen, um diese Version des -Satzes verwenden zu können, wird hier aber nicht diskutiert und kann bei den -Beispielen in diesem Kapitel als gegeben betrachtet werden. -Grundsätzlich ist die Aussage in dieser Version dieselbe, wie bei den Matrizen, -also dass für ein Operator eine Orthonormalbasis aus Eigenvektoren existiert, -falls er selbstadjungiert ist. - -\subsubsection{Anwendung des Spektralsatzes auf $L_0$} - -Der Spektralsatz besagt also, dass, weil $L_0$ selbstadjungiert ist, eine -Orthonormalbasis aus Eigenvektoren existiert. -Genauer bedeutet dies, dass alle Eigenvektoren, beziehungsweise alle Lösungen -des Sturm-Liouville-Problems orthogonal zueinander sind bezüglich des -Skalarprodukts, in dem $L_0$ selbstadjungiert ist. - -Erfüllt also eine Differenzialgleichung die in -Abschnitt~\ref{sturmliouville:section:teil0} präsentierten Eigenschaften und -erfüllen die Randbedingungen der Differentialgleichung die Randbedingungen -des Sturm-Liouville-Problems, kann bereits geschlossen werden, dass die -Lösungsfunktion des Problems eine Linearkombination aus orthogonalen -Basisfunktionen ist. - -\fi diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 2104645..0ef1072 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -9,11 +9,12 @@ \rhead{Wärmeleitung in homogenem Stab} In diesem Abschnitt wird das Problem der Wärmeleitung in einem homogenen Stab -betrachtet und wie das Sturm-Liouville-Problem bei der Beschreibung dieses -physikalischen Phänomenes auftritt. +betrachtet, angeschaut wie das Sturm-Liouville-Problem bei der Beschreibung +dieses physikalischen Phänomenes auftritt und hergeleitet wie die Fourierreihe +als Lösung des Problems zustande kommt. Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und -Wärmeleitkoeffizient $\kappa$ betrachtet dessen initiale Wärmeverteilung durch +Wärmeleitkoeffizient $\kappa$ betrachtet, dessen initiale Wärmeverteilung durch $u(t=0, x)$ gegeben ist. Es ergibt sich für das Wärmeleitungsproblem die partielle Differentialgleichung \begin{equation} @@ -58,7 +59,7 @@ als Randbedingungen. Bei isolierten Enden des Stabes können grundsätzlich beliebige Temperaturen für $x = 0$ und $x = l$ auftreten. -Die einzige Einschränkung liefert die Anfangsbedingung $u(0, x)$. +Die einzige Einschränkung liefert die initiale Wärmeverteilung $u(0, x)$. Im Fall des isolierten Stabes ist es nicht erlaubt, dass Wärme vom Stab an die Umgebung oder von der Umgebung an den Stab abgegeben wird. @@ -144,6 +145,7 @@ diese direkt für $X(x)$ übernomen werden. Es gilt also beispielsweise wegen \eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}, dass $X(0) = X(l) = 0$. + Damit die Lösungen von $X$ orthogonal sind, müssen nun also die Gleichungen \begin{equation} \begin{aligned} @@ -162,7 +164,7 @@ erfüllt sein und es muss ausserdem \end{equation} gelten. -Um zu verifizieren, ob die Randbedingungen erfüllt sind, werden also die +Um zu verifizieren, dass die Randbedingungen erfüllt sind, werden also die Koeffizientenfunktionen $p(x)$, $q(x)$ und $w(x)$ benötigt. Dazu wird die Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} mit der @@ -186,8 +188,8 @@ reguläres Sturm-Liouville-Problem. Es werden nun $p(x)$ und die Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant} -in \eqref{sturmliouville:eq:example-fourier-randbedingungen} eigesetzt und man -erhält +des Stab-Problems in \eqref{sturmliouville:eq:example-fourier-randbedingungen} +eigesetzt und man erhält \[ \begin{aligned} k_a y(0) + h_a y'(0) &= h_a y'(0) = 0 \\ @@ -203,7 +205,7 @@ und $k_b \neq 0$ gewählt werden. Somit ist gezeigt, dass die Randbedingungen des Stab-Problems für Enden auf konstanter Temperatur auch die Sturm-Liouville-Randbedingungen erfüllen. Daraus folg zunächst, dass es sich um ein reguläres Sturm-Liouville-Problem -handelt und weiter, dass alle daraus reultierenden Lösungen orthogonal sind. +handelt und weiter, dass alle daraus resultierenden Lösungen orthogonal sind. Analog dazu kann gezeit werden, dass die Randbedingungen für einen Stab mit isolierten Enden~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated} @@ -285,14 +287,15 @@ Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends und \eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated} benötigt. -Da die Koeffizienten $A$ und $B$, sowie die Parameter $\alpha$ uns $\beta$ im -allgemeninen ungleich $0$ sind, müssen die Randbedingungen durch die +Da die Koeffizienten $A$ und $B$, sowie die Parameter $\alpha$ und $\beta$ im +allgemeinen ungleich $0$ sind, müssen die Randbedingungen durch die trigonometrischen Funktionen erfüllt werden. Es werden nun die Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant} für einen Stab mit Enden auf konstanter Temperatur in die Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingesetzt. + Betrachten wir zunächst die Bedingung für $x = 0$. Dies fürht zu \[ @@ -315,7 +318,6 @@ sich B \sin(\beta l) = 0. \] - $\beta$ muss also so gewählt werden, dass $\sin(\beta l) = 0$ gilt. Es bleibt noch nach $\beta$ aufzulösen: \[ @@ -335,11 +337,11 @@ Ausserdem ist zu bemerken, dass dies auch gleich $-\alpha^{2}$ ist. Da aber $A = 0$ gilt und der Summand mit $\alpha$ verschwindet, ist dies keine Verletzung der Randbedingungen. -Durch alanoges Vorgehen kann nun auch das Problem mit isolierten Enden gelöst +Durch analoges Vorgehen kann nun auch das Problem mit isolierten Enden gelöst werden. -Setzt man nun die +Setzt man die Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated} -in $X^{\prime}$ ein, beginnend für $x = 0$, ergibt sich +in $X^{\prime}$ ein, beginnend mit $x = 0$, ergibt sich \[ X^{\prime}(0) = @@ -358,7 +360,7 @@ folgt nun = 0. \] -Wiedrum muss über die $\sin$-Funktion sicher gestellt werden, dass der +Wiederum muss über die $\sin$-Funktion sicher gestellt werden, dass der Ausdruck den Randbedingungen entspricht. Es folgt nun \[ @@ -385,7 +387,7 @@ wie auch für den Stab mit isolierten Enden \subsubsection{Fourierreihe als Lösung} Das Resultat~\eqref{sturmliouville:eq:example-fourier-mu-solution} gibt nun -wegen der neuen Variablen $n \in \mathbb{N}_0$ vor, dass es potentiell +wegen der neuen Variablen $n \in \mathbb{N}_0$ vor, dass es potenziell unendlich viele Lösungen gibt. Dies bedeutet auch, dass es nicht ein $A$ und ein $B$ gibt, sondern einen Koeffizienten für jede Lösungsfunktion. @@ -399,15 +401,15 @@ Wir schreiben deshalb den Lösungsansatz zur Linearkombination \] aus allen möglichen Lösungen um. -Als nächstes werden noch die Summanden für $n = 0$ aus den Summen herausgezogen, -da +Als nächstes werden noch die Summanden für $n = 0$ aus den Summen herausgezogen. +Da \[ \begin{aligned} a_0 \cos\left(\frac{0 \pi}{l}\right) &= a_0 \\ b_0 \sin\left(\frac{0 \pi}{l}\right) &= 0 \end{aligned} \] -gilt endet man somit bei +gilt, endet man somit bei \[ X(x) = @@ -483,13 +485,13 @@ gebildet: Bevor diese Form in die Integralform umgeschrieben werden kann, muss überlegt sein, welche Integralgrenzen zu verwenden sind. In diesem Fall haben die $\sin$ und $\cos$ Terme beispielsweise keine ganze -Periode im Intervall $x \in [0, l]$ für ungerade $n$ und $m$. +Periode im Intervall $x \in [0, l]$ für ungerade $n$ und ungerade $m$. Um die Skalarprodukte aber korrekt zu berechnen, muss über ein ganzzahliges Vielfaches der Periode der trigonometrischen Funktionen integriert werden. Dazu werden die Integralgrenzen $-l$ und $l$ verwendet und es werden ausserdem neue Funktionen $\hat{u}_c(0, x)$ für die Berechnung mit Cosinus und $\hat{u}_s(0, x)$ für die Berechnung mit Sinus angenomen, welche $u(0, t)$ -gerade, respektive ungerade auf $[-l, l]$ fortsetzen: +gerade, respektive ungerade auf $[-l, 0]$ fortsetzen: \[ \begin{aligned} \hat{u}_c(0, x) @@ -511,21 +513,22 @@ gerade, respektive ungerade auf $[-l, l]$ fortsetzen: \] Diese Funktionen wurden gerade so gewählt, dass nun das Resultat der Integrale -um den Faktor zwei skalliert wurde, also gilt +um den Faktor zwei skalliert wurde. +Es gilt also \[ -\begin{aligned} \int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx - &= + = 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx - \\ +\] +und +\[ \int_{-l}^{l}\hat{u}_s(0, x)\sin\left(\frac{m \pi}{l}x\right)dx - &= + = 2\int_{0}^{l}u(0, x)\sin\left(\frac{m \pi}{l}x\right)dx. -\end{aligned} \] -Zunächst wird nun das Skalaprodukt~\eqref{sturmliouville:eq:dot-product-cosine} -berechnet: +Als nächstes wird nun das +Skalaprodukt~\eqref{sturmliouville:eq:dot-product-cosine} berechnet: \[ \begin{aligned} \int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx @@ -574,13 +577,15 @@ orthogonal zueinander stehen und \] da Sinus- und Cosinus-Funktionen ebenfalls orthogonal zueinander sind. -Es bleibt also lediglich der Summand für $a_m$ stehen, was die Gleichung zu +Es bleibt also lediglich der Summand mit $a_m$ stehen, was die Gleichung zu \[ 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx = a_m\int_{-l}^{l}\cos^2\left(\frac{m\pi}{l}x\right)dx \] -vereinfacht. Im nächsten Schritt wird nun das Integral auf der rechten Seite +vereinfacht. + +Im nächsten Schritt wird nun das Integral auf der rechten Seite berechnet und dann nach $a_m$ aufgelöst. Am einnfachsten geht dies, wenn zuerst mit $u = \frac{m \pi}{l}x$ substituiert wird: \[ |