aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers
diff options
context:
space:
mode:
authorNicolas Tobler <nicolas.tobler@ost.ch>2022-08-21 18:06:18 +0200
committerNicolas Tobler <nicolas.tobler@ost.ch>2022-08-21 18:06:18 +0200
commit71d369b3d24a42b5abb66e9b26477472e0100b2f (patch)
treeccf90655a361705a33f5ef3b3d52666d5e5523d1 /buch/papers
parentcorrections (diff)
downloadSeminarSpezielleFunktionen-71d369b3d24a42b5abb66e9b26477472e0100b2f.tar.gz
SeminarSpezielleFunktionen-71d369b3d24a42b5abb66e9b26477472e0100b2f.zip
added pole zero calculation
Diffstat (limited to '')
-rw-r--r--buch/papers/ellfilter/elliptic.tex3
-rw-r--r--buch/papers/ellfilter/python/elliptic2.py7
-rw-r--r--buch/papers/ellfilter/python/elliptic3.py101
3 files changed, 108 insertions, 3 deletions
diff --git a/buch/papers/ellfilter/elliptic.tex b/buch/papers/ellfilter/elliptic.tex
index fc9d5b6..26d90f1 100644
--- a/buch/papers/ellfilter/elliptic.tex
+++ b/buch/papers/ellfilter/elliptic.tex
@@ -85,9 +85,10 @@ k_1 = k^N \prod_{i=1}^L \sn^4 \Bigg( \frac{2i - 1}{N} K, k \Bigg),
N = 2L+r.
\end{equation}
Die Herleitung ist sehr umfassend und wird in \cite{ellfilter:bib:orfanidis} im Detail angeschaut.
+$k_1$ jedoch gar nicht berechnet werden, um die elliptisch rationale Funktion zu erhalten.
Um ein elliptisches Filter auszulegen, kann die Ordnung $N$ und der Parameter $k$ gewählt werden.
-$k_1$ muss dann mit \eqref{ellfilter:eq:degeqsol} oder mit numerischen Methoden berechnet werden.
+% $k_1$ muss dann mit \eqref{ellfilter:eq:degeqsol} oder mit numerischen Methoden berechnet werden.
Je kleiner $k$ gewählt wird, desto grösser wird die Dämpfung des Filters im Sperrbereich im Verhältnis zum Durchlassbereich.
Allerdings verliert das Filter dabei auch an Steilheit.
Wenn $k$ und $k_1$ bekannt sind, können die Position der Pol- und Nullstellen $p_i$ und $n_i$ in einem Raster konstruiert werden, wie dargestellt in Abbildung \ref{ellfilter:fig:cd2}.
diff --git a/buch/papers/ellfilter/python/elliptic2.py b/buch/papers/ellfilter/python/elliptic2.py
index 6f03ecf..3d9065d 100644
--- a/buch/papers/ellfilter/python/elliptic2.py
+++ b/buch/papers/ellfilter/python/elliptic2.py
@@ -29,6 +29,9 @@ def ellip_filter(N, mode=-1):
fs=None
)
+ print("poles", a)
+ print("zeros", b)
+
if mode == 0:
w = np.linspace(0*omega_c,omega_c, 2000)
elif mode == 1:
@@ -148,8 +151,8 @@ plt.tight_layout()
plt.savefig("elliptic.pgf")
plt.show()
-print("zeros", a)
-print("poles", b)
+print("poles", a)
+print("zeros", b)
diff --git a/buch/papers/ellfilter/python/elliptic3.py b/buch/papers/ellfilter/python/elliptic3.py
new file mode 100644
index 0000000..10accbb
--- /dev/null
+++ b/buch/papers/ellfilter/python/elliptic3.py
@@ -0,0 +1,101 @@
+# %%
+
+import matplotlib.pyplot as plt
+import scipy.signal
+import numpy as np
+import matplotlib
+from matplotlib.patches import Rectangle
+import scipy.special
+import scipyx as spx
+
+# import plot_params
+
+def last_color():
+ return plt.gca().lines[-1].get_color()
+
+# define elliptic functions
+
+def ell_int(k):
+ """ Calculate K(k) """
+ m = k**2
+ return scipy.special.ellipk(m)
+
+def sn(z, k):
+ return spx.ellipj(z, k**2)[0]
+
+def cn(z, k):
+ return spx.ellipj(z, k**2)[1]
+
+def dn(z, k):
+ return spx.ellipj(z, k**2)[2]
+
+def cd(z, k):
+ sn, cn, dn, ph = spx.ellipj(z, k**2)
+ return cn / dn
+
+N = 6
+L = (N//2) * 2
+r = N - L
+
+k = 0.9143
+
+i = np.arange(1, L+1)
+ui = (2*i - 1) / N
+k1 = k**N * np.prod(sn(ui*ell_int(k), k)**4)
+k1 = 0.0165
+k1 = 0.0058
+
+
+kp = np.sqrt(1-k**2)
+k1p = np.sqrt(1-k1**2)
+
+K = ell_int(k)
+Kp = ell_int(kp)
+K1 = ell_int(k1)
+K1p = ell_int(k1p)
+
+# assert np.allclose(Kp*K1*N/K, K1p, rtol=0.001)
+
+zeros = K/N * (np.arange(N)*2 + 1)
+poles = zeros + (1j * Kp)
+# if len(poles) % 2 == 0:
+# poles = np.delete(poles, len(poles)//2)
+
+
+plt.plot(np.real(zeros), np.imag(zeros), "o")
+plt.plot(np.real(poles), np.imag(poles), "x")
+# plt.plot([0,K1], [0,K1p])
+# plt.plot([0,K], [0,Kp])
+plt.show()
+
+zeros = cd(zeros, k)
+poles = cd(poles, k)
+
+plt.plot(np.real(zeros), np.imag(zeros), "o")
+plt.plot(np.real(poles), np.imag(poles), "x")
+plt.ylim([-0.1,0.1])
+plt.xlim([-2.5,2.5])
+plt.show()
+
+w = np.linspace(0,2, 2000)
+
+def make_RN(w):
+ y = np.prod(w[:, None] - zeros[None], axis=-1) / np.prod(w[:, None] - poles[None], axis=-1)
+ y /= np.prod(1 - zeros) / np.prod(1 - poles)
+ return y
+
+
+RN = make_RN(w)
+
+plt.semilogy(w, np.abs(RN))
+plt.ylim([0.1,1000])
+
+plt.plot(w, np.ones_like(w) / k1)
+
+plt.show()
+
+H = 1 / (1 + RN**2)
+
+plt.semilogy(w, np.abs(H))
+plt.ylim([0.00001,1])
+plt.show()