diff options
author | Erik Löffler <erik.loeffler@ost.ch> | 2022-08-12 18:03:55 +0200 |
---|---|---|
committer | Erik Löffler <erik.loeffler@ost.ch> | 2022-08-12 18:03:55 +0200 |
commit | d9c6ead18aae68a14ce72b893d9c671156a1d6b3 (patch) | |
tree | 3eb6668b09ac439547d9753d4b64fbfdfa525319 /buch/papers | |
parent | Corrected error with continuation of u hat. (diff) | |
download | SeminarSpezielleFunktionen-d9c6ead18aae68a14ce72b893d9c671156a1d6b3.tar.gz SeminarSpezielleFunktionen-d9c6ead18aae68a14ce72b893d9c671156a1d6b3.zip |
Full calculation for a_m explained.
Diffstat (limited to '')
-rw-r--r-- | buch/papers/sturmliouville/waermeleitung_beispiel.tex | 58 |
1 files changed, 58 insertions, 0 deletions
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index cfa7386..5c246f2 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -462,6 +462,64 @@ Zunächst wird nun das Skalaprodukt \eqref{eq:slp-dot-product-cosine} berechnet: \end{aligned} \] +Betrachtet man nun die Summanden auf der rechten Seite stellt man fest, dass +nahezu alle Terme verschinden, denn +\[ + \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx + = + 0 +\] +da hier über ein ganzzahliges Vielfaches der Periode integriert wird, +\[ + \int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right) + \cos\left(\frac{m \pi}{l}x\right)dx + = + 0 +\] +für $m\neq n$, da Cosinus-Funktionen mit verschiedenen Kreisfrequenzen +orthogonal zueinander stehen und +\[ + \int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right) + \cos\left(\frac{m \pi}{l}x\right)dx + = + 0 +\] +da Sinus- und Cosinus-Funktionen ebenfalls orthogonal zueinander sin. + +Es bleibt also lediglich der Summand für $a_m$ stehen, was die Gleichung zu +\[ + 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + = + a_m\int_{-l}^{l}\cos^2\left(\frac{m\pi}{l}x\right)dx +\] +vereinfacht. Im nächsten Schritt wird nun das Integral auf der rechten Seite +berechnet und dann nach $a_m$ aufgelöst. Am einnfachsten geht dies, wenn zuerst +mit $u = \frac{m \pi}{l}x$ substituiert wird: +\[ + \begin{aligned} + 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + &= + a_m\frac{l}{m\pi}\int_{-m\pi}^{m\pi}\cos^2\left(u\right)du + \\ + &= + a_m\frac{l}{m\pi}\left[\frac{u}{2} + + \frac{\sin\left(2u\right)}{4}\right]_{u=-m\pi}^{m\pi} + \\ + &= + a_m\frac{l}{m\pi}\left(\frac{m\pi}{2} + + \underbrace{\frac{\sin\left(2m\pi\right)}{4}}_{\displaystyle = 0} - + \frac{-m\pi}{2} - + \underbrace{\frac{\sin\left(-2m\pi\right)}{4}}_{\displaystyle = 0}\right) + \\ + &= + a_m l + \\ + a_m + &= + \frac{2}{l} \int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + \end{aligned} +\] + Zuletzt wird die zweite Gleichung der Separation \eqref{eq:slp-example-fourier-separated-t} betrachtet. Diese wird über das charakteristische Polynom |