diff options
author | Joshua Baer <joshua.baer@ost.ch> | 2022-07-28 18:09:00 +0200 |
---|---|---|
committer | Joshua Baer <joshua.baer@ost.ch> | 2022-07-28 18:09:00 +0200 |
commit | e2b1ed24b607291b6af86ba43c8f6f656a92b476 (patch) | |
tree | 396edb1b02b4cdde49a7ed79740c486914e9f37e /buch/papers | |
parent | Kapitel bessel unterteilt (diff) | |
download | SeminarSpezielleFunktionen-e2b1ed24b607291b6af86ba43c8f6f656a92b476.tar.gz SeminarSpezielleFunktionen-e2b1ed24b607291b6af86ba43c8f6f656a92b476.zip |
minor cosmetic changes
Diffstat (limited to '')
-rw-r--r-- | buch/papers/fm/03_bessel.tex | 20 |
1 files changed, 10 insertions, 10 deletions
diff --git a/buch/papers/fm/03_bessel.tex b/buch/papers/fm/03_bessel.tex index bf485b1..760cdc4 100644 --- a/buch/papers/fm/03_bessel.tex +++ b/buch/papers/fm/03_bessel.tex @@ -74,16 +74,16 @@ Zu beginn wird der Cos-Teil \[ \cos(\omega_c)\cos(\beta\sin(\omega_mt)) \] -mit hilfe der Bessel indentität \eqref{fm:eq:besselid1} zum +mit hilfe der Besselindentität \eqref{fm:eq:besselid1} zum \begin{align*} - \cos(\omega_c t) \cdot [\, J_0(\beta) + 2\sum_{k=1}^\infty J_{2k}(\beta) \cos(2k\omega_m t)\, ] + \cos(\omega_c t) \cdot \bigg[\, J_0(\beta) + 2\sum_{k=1}^\infty J_{2k}(\beta) \cos( 2k \omega_m t)\, \bigg] &=\\ J_0(\beta)\cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) - \underbrace{2\cos(\omega_c t)\cos(2k\omega_m t)}_{Additionstheorem} + \underbrace{2\cos(\omega_c t)\cos(2k\omega_m t)}_{\text{Additionstheorem}} \end{align*} wobei mit dem Additionstheorem \eqref{fm:eq:addth2} \(A = \omega_c t\) und \(B = 2k\omega_m t \) zum \[ - J_0(\beta)\cdot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \{ \cos((\omega_c - 2k\omega_m) t)+\cos((\omega_c + 2k\omega_m) t) \} + J_0(\beta)\cdot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \{ \cos((\omega_c - 2k \omega_m) t)+\cos((\omega_c + 2k \omega_m) t) \} \] wird. Wenn dabei \(2k\) durch alle geraden Zahlen von \(-\infty \to \infty\) mit \(n\) substituiert erhält man den vereinfachten Term @@ -98,20 +98,20 @@ Nun zum zweiten Teil des Term \eqref{fm:eq:start}, den Sin-Teil \[ \sin(\omega_c)\sin(\beta\sin(\omega_m t)). \] -Dieser wird mit der \eqref{fm:eq:besselid2} Bessel indentität zu +Dieser wird mit der \eqref{fm:eq:besselid2} Besselindentität zu \begin{align*} - \sin(\omega_c t) \cdot [J_0(\beta) \sin(\omega_c t) + 2\sum_{k=1}^\infty J_{2k+1}(\beta) \cos((2k+1)\omega_m t)] + \sin(\omega_c t) \cdot \bigg[ J_0(\beta) + 2 \sum_{k=1}^\infty J_{ 2k + 1}(\beta) \cos(( 2k + 1) \omega_m t) \bigg] &=\\ - J_0(\beta) \cdot \sin(\omega_c t) + \sum_{k=1}^\infty J_{2k+1}(\beta) \underbrace{2\sin(\omega_c t)\cos((2k+1)\omega_m t)}_{Additionstheorem}. + J_0(\beta) \cdot \sin(\omega_c t) + \sum_{k=1}^\infty J_{2k+1}(\beta) \underbrace{2\sin(\omega_c t)\cos((2k+1)\omega_m t)}_{\text{Additionstheorem}}. \end{align*} Auch hier wird ein Additionstheorem \eqref{fm:eq:addth3} gebraucht, dabei ist \(A = \omega_c t\) und \(B = (2k+1)\omega_m t \), somit wird daraus \[ - J_0(\beta) \cdot \sin(\omega_c) + \sum_{k=1}^\infty J_{2k+1}(\beta) \{ \underbrace{\cos((\omega_c-(2k+1)\omega_m) t)}_{neg.Teil} - \cos((\omega_c+(2k+1)\omega_m) t) \} + J_0(\beta) \cdot \sin(\omega_c) + \sum_{k=1}^\infty J_{2k+1}(\beta) \{ \underbrace{\cos((\omega_c-(2k+1)\omega_m) t)}_{\text{neg.Teil}} - \cos((\omega_c+(2k+1)\omega_m) t) \} \]dieser Term. Wenn dabei \(2k +1\) durch alle ungeraden Zahlen von \(-\infty \to \infty\) mit \(n\) substituiert. -Zusätzlich dabei noch die letzte Bessel indentität \eqref{fm:eq:besselid3} brauchen, ist bei allen ungeraden negativen \(n : J_{-n}(\beta) = -1\cdot J_n(\beta)\). -Somit wird negTeil zum Term \(-\cos((\omega_c+(2k+1)\omega_m) t)\)und die Summe vereinfacht sich zu +Zusätzlich dabei noch die letzte Besselindentität \eqref{fm:eq:besselid3} brauchen, ist bei allen ungeraden negativen \(n : J_{-n}(\beta) = -1\cdot J_n(\beta)\). +Somit wird neg.Teil zum Term \(-\cos((\omega_c+(2k+1)\omega_m) t)\) und die Summe vereinfacht sich zu \[ \sum_{n\, \text{ungerade}} -1 \cdot J_{n}(\beta) \cos((\omega_c + n\omega_m) t). \label{fm:eq:ungerade} |