diff options
author | Joshua Baer <joshua.baer@ost.ch> | 2022-08-23 11:01:01 +0200 |
---|---|---|
committer | Joshua Baer <joshua.baer@ost.ch> | 2022-08-23 11:01:01 +0200 |
commit | f2151e0709da5b6f9dedfb26a1b152d370d8dc77 (patch) | |
tree | 32ab251c73b4c4c359ba275c17b0993763a054c7 /buch/papers | |
parent | Merge branch 'master' of github.com:JODBaer/SeminarSpezielleFunktionen (diff) | |
download | SeminarSpezielleFunktionen-f2151e0709da5b6f9dedfb26a1b152d370d8dc77.tar.gz SeminarSpezielleFunktionen-f2151e0709da5b6f9dedfb26a1b152d370d8dc77.zip |
save
Diffstat (limited to '')
-rw-r--r-- | buch/papers/fm/03_bessel.tex | 9 | ||||
-rw-r--r-- | buch/papers/fm/04_fazit.tex | 4 | ||||
-rw-r--r-- | buch/papers/fm/Python animation/Bessel-FM.ipynb | 6 |
3 files changed, 9 insertions, 10 deletions
diff --git a/buch/papers/fm/03_bessel.tex b/buch/papers/fm/03_bessel.tex index 6faae9f..0f2c838 100644 --- a/buch/papers/fm/03_bessel.tex +++ b/buch/papers/fm/03_bessel.tex @@ -206,9 +206,9 @@ Um sich die Besselfunktion noch einwenig Bildlicher vorzustellen, sieht \(J_{n}( \label{fig:bessel} \end{figure} -Nun hat es in der Reihe drei Parameter um unser FM Signal zu verändern, das wären das Beta, Omega c, Omega m -Gegeneüber AM hatten wir anstatt beta Ac. -Da das Beta unäbhängig von Omega m und nicht in der Funktion selbs ist vereinfacht sich die Berechnung extrem, um herauszufinden wo unser nachrichtensignal sich befindet. +Nun hat es in der Reihe drei Parameter um unser FM Signal zu verändern, das wären \( \beta, \omega_c, \omega_m\) +Gegeneüber \textit{AM} kommt der parameter \( \beta\) hinzu. +Da das \(\beta\) unäbhängig von \(\omega_m\) und nicht in der Funktion selbs ist vereinfacht sich die Berechnung extrem, um herauszufinden wo unser Nachrichtensignal sich befindet. Zuerst entdecken wir was diese einzelne Unabhängigen parameter verändern. \subsubsection{Beta} Beat ist wie die Phasenverschiebung Varphi @@ -228,7 +228,8 @@ Hier wird beschrieben wie die Bessel Funktion der FM im Frequenzspektrum hilft, \item Im Frequenzspektrum darstellen mit Farben, ersichtlich machen. \item Parameter tuing der Trägerfrequenz, Modulierende frequenz und Beta. \end{itemize} - \newpage +\newpage + %\subsection{De finibus bonorum et malorum %\label{fm:subsection:bonorum}} diff --git a/buch/papers/fm/04_fazit.tex b/buch/papers/fm/04_fazit.tex index 598f258..26f541d 100644 --- a/buch/papers/fm/04_fazit.tex +++ b/buch/papers/fm/04_fazit.tex @@ -9,6 +9,4 @@ Ohne die Besselfunktion könnte man die Einzelen Peaks der Fm nichicht sounabängig von einander berchenen und herausfinden. Da die Besselfunktion schnell abklingt, brauchte es auch wenige Besselkoeffizente um das Nachrichten Signal wieder zurückzugewinnen. -TODO Anwendungen erklären und Sinn des Ganzen. - - +TODO Anwendungen erklären und Sinn des Ganzen.
\ No newline at end of file diff --git a/buch/papers/fm/Python animation/Bessel-FM.ipynb b/buch/papers/fm/Python animation/Bessel-FM.ipynb index d631ef8..37312fa 100644 --- a/buch/papers/fm/Python animation/Bessel-FM.ipynb +++ b/buch/papers/fm/Python animation/Bessel-FM.ipynb @@ -173,12 +173,12 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 44, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABP1ElEQVR4nO29d3RkeXXv+92Vc5WqlFOru6fjTE8PPT3JDGDDAAMGBkwwYB422J7FMr6+husATuterq+ffX1tv2ebh+9g+wJOgDFhvBjCkDykgenu6Tid1a1WVmVVjr/3xzm/UkmqcFJVqaXfZy2tlqqOTpDU37PP/u393cQYg0AgEAi2P6Zen4BAIBAIuoMQfIFAINghCMEXCASCHYIQfIFAINghCMEXCASCHYKl1yfQiv7+fjY1NdXr0xAIBILbhpMnT0YYYwON3tvSgj81NYUTJ070+jQEAoHgtoGIZpq9J1I6AoFAsEMQgi8QCAQ7BCH4AoFAsEMQgi8QCAQ7BCH4AoFAsEPQLfhENEFE3yaiF4joAhH95wbbEBH9JRFdI6KzRHRM73EFAoFAoA4jyjLLAP4LY+wUEXkBnCSipxljL9Rt8xoA++SPBwB8TP5XIBAIBF1Cd4TPGFtkjJ2SP08BuAhgbMNmjwH4FJN4FkCAiEb0Hlugn5XVPJ545jpmoplen4pAIOgwhubwiWgKwIsA/GjDW2MAZuu+nsPmmwLfx+NEdIKIToTDYSNPT7CBYrmKd3z8WfzRU5fwzo//CJlCudenJBAIOohhgk9EHgD/BuDXGWOrWvfDGHuCMXacMXZ8YKBhd7DAIL50eh7Xwxk8/tI9mE/k8G+n5np9SgKBoIMYIvhEZIUk9v/EGPt8g03mAUzUfT0uvyboIV94fh5TIRc+/JqDODjsxZfPLvb6lAQCQQcxokqHAPwdgIuMsT9vstmTAN4tV+s8CCDJGBPq0kOSuRKenY7idXePgojwkwcGcXImjlS+1OtTEwgEHcKICP/FAP4vAC8notPyx2uJ6H1E9D55m6cATAO4BuDjAH7FgOMKdPDcjRiqDHjxHf0AgJfs60e5ynDqVqK3JyYQCDqG7rJMxtj3AFCbbRiA9+s9lsA4fjgdhc1iwosmAwCAI+N+AMDZ2QRett+4tZPvX4vgn340g99+9CB2hdyG7VcgEKhnS9sjCzrHiZk47pkIwGE1AwB8Div2DLhxZi5p2DGqVYbf/NczWEjmwRjwsXfda9i+BQKBeoS1wg6kXKni0uIqjoz5171+56gfl5Y0F1ht4tx8EgvJPLx2C75zOYxSpWrYvgUCgXqE4O9AbkQyKJSruHPUt+71OwY8mE/kkCtWDDnOqVtxAMAHXrkfuVIFFxaMu5kIBAL1CMHfgXDhPbxB8PcOusEYMB1JG3KcFxZW0e+x4VV3DsnHNS5dJBAI1CMEfwdyYSEJm8WEvQOeda/zr6+HjbFZuLCwikMjPoz6nXBazbi+IuwbBIJeIgR/B/LC4ioODnthNa//9e/ud4MIuLaiP8JnjGE6ksb+IS9MJsLufrdhTw4CgUAbQvB3IFeXJSHeiMNqxqjfidlYVvcxIuki8qUqJvqcAIA9A25cDwvBFwh6iRD8HUYqX8JKqoDd/Y1r4sf6nJiL6xf8WXkfE0EXAGAq5MZCIo+yqNQRCHqGEPwdxo2IlEffO9BY8Mf7nJiP53QfZ07ex3ifJPgjAQcqVYZIuqh73wKBQBtC8HcY0/KC7J4NC7ac8YATS6t53TXzPC00Lqd0RvwOAMBiUv/NRCAQaEMI/g5jOpKBiYBdIVfD98f7XKgyYCmZ13WcuXgOQbcNbrvUzD3sk4Rf734FAoF2hODvMKbDaYz3uWC3mBu+zyPyWZ15/MVkDqMBR+3rtQhfCL5A0CuE4HcAyStuazIdzmBPk/w9sJZz15vHD6cKGPSuCX7AZYXdYsLSqhB8gaBXCME3mD/7+mXs/72v4L2feM4wiwKjqFYZbkQy2NPfOH8PAMN+B4iA+YR+wR/w2GtfExFG/A4s6NyvQCDQjhB8A/ne1Qj+6lvXcM9EAN+6tII/+/rlXp/SOpZTeeRKlZYRvs1iQshtw/JqQfNxKlWGaKaIAa993euDXgfCKe37rSeZLeGDnz2Nv/7W1S39RCUQbCWE4BvIx/7jGoZ9DvzjLz2Atx0fx6eencHKFkphzESlvHyzBVvOoNeh67xjmSIqVYZB33rBD3lsiGWMKcv8s6cv4/On5vG/vn4Fz1yNGLJPgWC7Y9RM278nohUiOt/k/Z8komTdRKw/MOK4W4louoAfXo/ibfdNwG4x430v24tiuYrPP791RvfyUsmJvtaCP+SzYzmlXfB5FF+f0gGAoNuGqAGCX6pU8YXn5/G6u0cw5LPjH5+d0b1PgWAnYFSE/wkAj7bZ5ruMsXvkj48YdNwtwzcuLqPKgFfLzpB7Bjw4NhnA50/N9fjM1piN50AEjAacLbcb8jl0pXTCaVnwvRsjfDviWSn618OPb8SQypfxhqOjeM1dI3jmShj50tZaLxEItiKGCD5j7BkAMSP2dbvy3asRDPscODyyZjn8+qOjuLKcxkx0a7hEzsWzGPE5YLO0/rUP+hyIpAuabRB4hF9fpQMA/R4bGAPiWX1R/nM3YyACfuKOfrz4jn4UylWcmxfWywJBO7qZw3+IiM4Q0VeI6M5mGxHR40R0gohOhMPhLp6ePk7NxHF8qg9Ea+N9f+rAIADgO5e3xnXMxXK1sstWDHrtYAyabRC44Pd7beteD7mliD+q017h7FwSdwx44LFbcEyeyXtyJq5rnwLBTqBbgn8KwC7G2FEAfwXgi802ZIw9wRg7zhg7PjBg3DDtTrKYzGEhmcexyb51r0/1uzEVcuE7l1d6dGbrmY1nMR5snc4BpJQOACxrXLgNpwrw2C1w2daPTA66pRtANK2vUufsXBJ3jwcASGmiqZALZ2YTuvYpEOwEuiL4jLFVxlha/vwpAFYi6u/GsbvB6VsJAMCxXX2b3nvp/gH86Eas5y6RhXIFS6v5tgu2gLRoC2gX/FimUBP3evo90msRHQu3iWwRkXQBB4fX7J0PDHtxeTmleZ8CwU6hK4JPRMMk5zqI6H75uNFuHLsbXFpKgQjrRIhz31QQ2WIFFxd7K0iLiTwYW7MrbkUtwtdYMx/PltDnsm56PSRX7cR0RPjc7bPe3vnAkBc3IxmxcCsQtMGossx/AfBDAAeIaI6IfpGI3kdE75M3eQuA80R0BsBfAng720bdMleWU5gKueGwbvanOT4lRf3P3eztmjb3xuFeOa0IuW0wETTX4ieyRQRcmyP8gNMKE0FXaSYX/Kk6wd8/7EWVQQxYEQjaYGm/SXsYY+9o8/5fA/hrI461FbmynMK+wcZ2BSN+J8b7nDgxE8N7H97d5TNbYzYmWRooifAtZhOCbjsiGiPxWLbYcMCKyUQIum26PPFvym6fk3XXcUCe3nVlOYU7R/2a9y0QbHdEp61O8qUKbkazONAgncO5byqI527Ge2oBMBvPwmomDPsc7TeGlG/XKsyJTKlhhA8AfS4bEjrKMqcjGYz3udaVlk6GXCACbkb0T+oSCLYzQvB1Mh3OoFJl2NdgRizn6Lgf4VRBVzOTXmZjWYwGnDCbqP3GkGwQtFTTlCpVpApl9DURfL/TikS2pHq/nJvRzLp0DgDYLdIs3lsGzOIVCLYzQvB1clNuqtrTZEYsABwZl9IMZ+cS3TilhszFc4ry95x+j11ThM/FPOjevGgLSDbJiZx2wZ+N5bCrQVpqIujcMg1uAsFWRQi+TnhUOdnCkOzwiB8mAs73sBt0Lp5VVJLJCbntmiJ8nq5pltLxO21IakzpZItlJHMljAQ2p6V2Bd0iwhcI2iAEXye3Yln0uazwORpHtADgtJmxb9Dbs/b/bLGMSLqoaMGWE/LYkClWVHv6x+UIv1lKJ+CyIqkxwufjEfn0rHomQy5E0kVkCmVN+xYIdgJC8HUyG8tiMtQ8ncM5Mu7HuflkTxZu5+TpVepSOnJXbEZdlM/tjwMN6vABqTQzU6ygWFbfiMYFn8/HrYdbPosoXyBojhB8ndyKZdeVCDbjyJgfkXSxJyP+5uQafDURfr9Hm+8NT+n0Nei0BdZuBFqi/MVWEX5QCL5A0A4h+DooV6qYj+cwqcCf5q4xaeH23Fz30zq8Bl9NhM+7YtXW4q+ldBpH+H451ZPMqc/j85vlcAPB55bPi2KEokDQFCH4OlhM5lGuMkUR/uERn7Rwu7DahTNbz2wsC4fVtGkgSStCNaMz9RG+zWKCs0HXMSCldKTttET4OfS5rA07mkNuG2wWU+0pQCAQbEYIvg54+kBJqsRpM2N3vxuXl3og+PEsxvtc66yb28FTOhGVOfx4toigy9b0WDylo0Xwl5J5DPsbP6XUhqQLwRcImiIEXwfzcvpgPKAsN35w2IdLS903UZuN5TChIp0DSDcot82sOsKPZ0tNF2wBIOCUnhy01OIvJvMN8/ecEb9DpHQEghYIwdcBrxoZ8itLlRwc9mImmu166eCcHOGrJeRRX4sfzxSblmQCUqctAE32ClKE31zwR/1OkdIRCFqwYwT//HwSf/nNq6rryluxmMyj32OD3dI4X72Rg/L4w256tydzJazmy5hQsLC8kZBH/dDxeLaIviZdtgDgdVhApL5Kp1ypIpoptlyHGAk4sLSa1z0zVyDYruwIwS9VqvjlT53Anz99BR/99jXD9ruUzLWMODfC/fIvddEbf5avM2iJ8N322rhCpSSyzY3TAMkxU4ufTkx+IuD9AY0Y8TtRqTKspESULxA0YkcI/unZRO1R/9/PLhjW/LSYzDdsAmrGeJ8THrsFl7q4cKulBp8z4FUX4TPGkMg1Hn5ST8Cp3k+HryWEWkT4o7LlwkJCCL5A0AijBqD8PRGtENH5Ju8TEf0lEV0jorNEdMyI4yrl+9ciMBHwG6/aj5lottZ5qpel1daLiBshIhwc9nY1wtfSZcsJue2IZYqoKkyRrObLqFRZyxw+INXiq83h8w7eUJOGLkCK8AGpfFMgEGzGqAj/EwAebfH+awDskz8eB/Axg46riBcWVrG7342X7JOGol9Y0N/8lCtWkMiWVKV0AODgiBcXl1a7ZrEwG8vCa7fUFkvVEPLYUKkyxdF4rcu2jeAHnOr9dHgDWMsInwu+iPAFgoYYIviMsWcAtJrh9xiATzGJZwEEiGjEiGMr4epKGvsGvTgw7IXZRLhgQPNTretT4UARzsFhH1L5ctfqxWfjOYwH1dXgc2ozaBXW4vMovNWiLSBbJKvM4fOUTqscvs9pgctmFpU6AkETupXDHwMwW/f1nPxax8mXKpiJZrB/yAOH1YzJoAvTYf2+6TxtoCalA9Qv3HYnjz8by6quwef0y+kTpb74XMRbLdoCcg5fZUonminAbKKWrqREhEGvXSzaCgRN2HKLtkT0OBGdIKIT4XBY9/5mollUGbBXnjk7FXLVBmHrYbmFr0sr9nPB70IDFmMMc/GcpgVbYC3CV9p8FVeY0vE7rbV8v1Ki6SKCbhtMbSZ2DXodWFFZWSQQ7BS6JfjzACbqvh6XX9sEY+wJxthxxtjxgYEB3QdeSKxftNwVcmMmmtGdQ+dpA7WC73NYMd7nxMUuRPiRdBG5UkXTgi0g5fAB5RbJ7YzTONxALZVXntaJZootF2w5gz47VnrgSCoQ3A50S/CfBPBuuVrnQQBJxthiNw68IKdeuJviVMiFTLGCsIZpTvWsrBbgdVjgsllUf2+3LBZqJZkaavABKVInUpPSKcJEaJl2AbQZqEXThZq/TytEhC8QNMeossx/AfBDAAeIaI6IfpGI3kdE75M3eQrANIBrAD4O4FeMOK4SFhI5mE2EQa8UifP0xrzO0sxwuqDKfbKeQyNe3IhkkC8Z1/XbiFn5GrWmdMwmQtClfJh5LFNEwNU+7cIrhtRU6kQzxdoTRyuGfHZkixWkxeQrgWAT6sPTBjDG3tHmfQbg/UYcSy2LiTyGfQ6YZRHitdpLOis5IillEWcjDg77UKkyXFtJ13zyOwHvstWa0gFkewUVi7atjNM4NcdMNYIv5/DbMeiTfifLq3l4BjyK9y8Q7AS23KKt0cwncrUOTGCtqkZv6Z7SiLMRB0ekhdtO5/Hn4lmE3Da47drv6yG3XUUOv7VxGkdthJ8vSRG70pQOIKXcBALBera94EuWumsRbsBlhd1i0j1qMKIwp9yIqZAbDqup43n82VhOV3QPAEEVBmrxbHtbBQDw8zGHCkszowq6bDlDcoQvSjMFgs1sa8FnTDLS4iIA1A3K0OGbXqpUkciWNAu+2UQ4MOTtuKfObDyLcY35e06/W01Kp9i2Bh9QH+HHFPjocAZEhC8QNGVbC362WEG+VN0kFMN+h64cfs3XRWNKB5Dy+BcXUx2zWKhUGRYSOc0VOpyQx45kroRiudp221hGWZ7dbjHDaTUrrtLhU7eU/Lx9DgscVlOtT0IgEKyxrQW/5rC4QYT0DsrglsFaI3xAyuPHMkXd5aHNWF7No1Rhmnzw6+EiG2+TfskVKyiUq4oWbQEpylca4Tf7PTZC6rYVpZkCQSO2teDzyHCjMA/4JJ93rdE1N/Ia8OqL8AHgYoecM/X44NcTcsuzbdvcmJR22XICLuUWyVEFxmn1DHrtIsIXCBqwrQV/Lfe7XoQGPHYUK1Ws5rXVaq9FnNoj/EMjnfXUmdVhi1wPNytrl8evGacpFHyfmgg/U4TdYoLbpmyy2JDPoXpwS6f49qUVvP+fTuEvnr7S8b4LgaAd21rwo5nGkSG/AbSLWpvBv6/fq13wAy4bRvyOjlXqzMayIALGdAp+zU+nTWlmQqGtAifgtCKpNIcvV0Qpdfwc8Nq3RErnS6fn8Z5PPIdnp6P4f795Ff/ls2e6ZostEDRiWwt+pEnut1+lKdjm/RbgsCqPOJtxcNjbsVr8m9EMRv1OxfN2mxFSGOHzlI6SRVuAp3SU/fxjKnsehnwOpAvlrg+Lr2cpmcfvfP4c7pvqw/c/9HL85qsP4MvnFvHNiys9OyeBYFsLfjRdhNtmhsO6XvS44GuN8KPpIkJu5RFnMw6O+HA9nFZUAaOWm9Espvr15e8BwGu3wGY2tfXT4YKvpCwTUL9oq/RGAkg5fAA9jfL/8ltXUaxU8WdvvQcOqxmPv3QPJoMuPPHMdM/OSSDY3oKfKTRc6NMr+OF0QVc6h3Nw2ItShWE6kta9r43cjGQwFXLr3g8RyfYKbRZtM9wLX2FKx2VDvlRVlNeOpguq1kvq7RV6wcpqHp99bhY/e98EJkPSTddqNuFdD07ixzdjuLLcvRGXgu5SqlTx0W9fw5fPdsUbUjXbW/DTjVMBfS6r5AKpMQKMpIsY0FGDzzk0IlXqGD3jNp4pIpkrYXe/fsEHZD+dNt228WwRXocFVrOyPymf3Hy12ibKZ4whkim2nHS1kSF5ClmvIvx/PTmHcpXhvS/eve71N71oHETAV84t9eS8BJ3nE9+/iT/92mW8/59P4eoWvLFvb8HPFBtGhhazCUGXDWGNOXy1EWczdve7YTObDM/j34xKA152GRDhA7KfjoKyTKUVOkCdRXIbwU8XyiiWq6py+LWUTg8i/GqV4dPP3cKDe4LYs8G8bcBrx4smAvjGxeWun5eg8zDG8C8/voV9gx5YTITPnZzr9SltYnsLfrrQNDLs99g1pXSqVYZopoh+HTX4HKvZhDsGPbhocKUOF/zdBuTwAWnRu30OX5mPDkepvYKWEli/0wqbpTfdts/PxjEby+Ftxycavv+KQ0M4N5/UnE4UbF1mYzlMRzJ414O78MCeIJ65Gun1KW1i2wo+YwyxTBF9TRb7+r3Kfd7rSeRKqFSZri7beg6N+Ayvxb8RycJE2n3wNyKldNrl8Jv/rBtRs0huU5rJU0lBFRH+2mzb7ovqV88vwWomPHJ4qOH7D+4JAgBO3Ix387QEXeD0XAIAcO+uPtw3FcSlpVWsqpjq1g22reBnihWUq6yWOthIyG1XPMmpHrVdn+04NOLFSqqg6ebTjJuRDEYD+ksyOSGPHflSFdli8zJHtSkd5RG+3POgMoU25HN03UCNMYavXljCi+/obzr168hYAHaLCc/djHX13ASd5+xsAnaLCQeGvTg6EQBjxq/P6cWoiVePEtFlIrpGRB9q8P4vEFGYiE7LH79kxHFbwYWkWdWI1pQO975Rs4jYCm6xcNnAtM5M1JgKHQ7vY2hVi690+Akn4LTJ39f6phvVaFQ35LNjucsWyS8srmI2lsNr7hpuuo3NYsI9EwEh+NuQs3NJHB71wWo2Yf+Q1El/eYst3OoWfCIyA/gogNcAOAzgHUR0uMGmn2GM3SN//K3e47aDC4m/WYTvsSFbrCBXVNfuzp8KtI433Ai3WLiwYExahzGGG5GMITX4nHZlrMVyFelCGUEVEb7XYQFR+yodHuGrqcMHpEEo4S5H+N94YQVEwCOHGqdzOPfu6sOFhVVhtbDNuLycwmG58m7U74DHbtlylTpGRPj3A7jGGJtmjBUBfBrAYwbsVxc8wvc1EfyaR4zCaU4co1M6IY8dYwEnzs4nDdlfPFvCar5sbITfptuW31wDKkTZZCL4HO0N1CLpIrx2y6bmuXYM+uxIdbnb9rtXw7h7zN/2b+POUT8qVYary8b3Xwh6w8ZSaCLCHYOeLfc7NkLwxwDM1n09J7+2kTcT0Vki+hwRNS5hAEBEjxPRCSI6EQ6HNZ8UjxybRfhBtzZ7hUi6ALOJmq4NaOHImB/n5AUfvUyHpT8wo2rwgfZ+OrGaU6a6n0nA1b7bNpYpqlqw5Qx5u1uLn8qX8PxsAi++o7/ttneOSlHgC4vG3OQFvedGrTJu7f/drpALs/Fsr06pId1atP13AFOMsbsBPA3gk802ZIw9wRg7zhg7PjAwoPmAyTaCz6PWmMLxfZxIqoiQ2waTSZ+tQj1Hxv24Gc0qNhNrxdUVSfB5DtEIeA6/2SI3/xmqSekA0u+mfZVOQZEP/kZ4t223avGfnY6hUmV4eF97wZ8MuuC2mQ1L4wl6z83I5t6X8T5p7ka5Yrx1ilaMEPx5APUR+7j8Wg3GWJQxxkOtvwVwrwHHbUlbwa+JmMqUThO7Bj0cHQ8AAM4ZkNa5spyC02rGWECfS2Y9DqsZHrul6dMQvxGotZtQ4qcTSRU1lcDybtvlLkX4378WgdNqxr27+tpuazIRDo34hOBvI25GpVLoybpS6Ik+FypVpnt+tpEYIfjPAdhHRLuJyAbg7QCerN+AiEbqvnwDgIsGHLclyVwJZhPBY7c0fJ+LttoIP5xW1+avhCNjfgDA2fmE7n1dW0njjkGPoU8gQOta/FrppEphViL4Wm+w3e62/e7VMO7fHVRcCntwxIury50bcSnoLjcjGYz1OWGzrEnquDx8aDamfX620egWfMZYGcCvAvgaJCH/LGPsAhF9hIjeIG/2a0R0gYjOAPg1AL+g97jtSOZK8DksTR0t3TYzbBZTW4+YjURSBcMqdDh+lxW7Qi6cm9Mf4V9dTmPfkKf9hioJtRhmrnVdo10Ov1KVmue03GB5t203cvhLyTyuhzN4WEH+nrN3wIPVfFlTL4hg6zETy2JXcP26GR8vOreF8viNw1+VMMaeAvDUhtf+oO7zDwP4sBHHUkoyV26azgGkVfT+FiLWCMaYHHEaG+EDUpT//K2Ern0kcyUsreaxb9C4/D0n5LHXxiZuROu6Bo/wGWMNb8yJbBFVpmyW7UaISKrF70KEf2JGqql/QO6iVcJe2WfnejiNAQOcVwW9ZTGRw4ED69ccR/xOEAFz8W0U4W9VkrkS/G0WEYMKLAPqyRQryJeqhtkq1HN0PID5RE5Xx+01ecF232CHIvwmT0N8IpVaAk4bKlWGdJPSybWmK20/70Fvd7ptT80k4LCaau6nStgzIEWD18Nbq2xPoJ5SpYpwuoBh//p1M5vFhJDbjpUuNwC2YnsLfpsUQ8htV5XD53bKnRD8I+NyHl9HWoc3eRhZocMZ8EqOmY0qDiJpbU89/PfTrFKH/7y1PlF1q9v25K047h4PKLaGBoBRvxMOqwnXVzIdPDNBN1hJFcCY1Gy1Eekpc+sY5W1fwc8WFQi+upTO2ozczqR0zCbCqVvaTbUuL6fgsJp0z7FtxLDfgSprXJopzQdQfxP0u1r76UQy+rqau9Ftmy9VcGE+qag6px6TibCn3yMi/G3AUlJK2Qw3EPxBb3fSikrZvoKfK8HvbL1EwStPlFZKhFNy+WEHIny33YLDIz78+IZ2j5ULC6s4POKD2eAKHQAYkf+YF5Lr85GMMc0TwNoZqOntau5Gt+25+STKVYZjk+oEHwD2DgrB3w4sJiVBH/FvDrSGfI6ejtrcyLYUfMYYVvOtF22BehdIZZ4mvGa/U4ts900FcXo2oWnGbbXK8MLCKu6SSzyNZtgn/TEvJddHKyl5QImWSpp2FsnRdBEmguau5m50256ckZ7Ijk0GVH/vVMiFhUQOpS3UmCNQD/8/0TDC9zkQaZIK7QXbUvDThTIqVdZW8Lkhl9I8Pk//qDXyUsr9u/tQKFc1NWDNxLJIF8q4a7Qzgj8akP6YFzcIvp51jZpjZq7xzz+aKSDotmvuKehGt+3JmTh297s1PYVMBF2oMmAhsXWqOATqWUjk4bKZ4XNszigMeu1gDKrLvzvFthT8dl22HB6VKu22jaQLCLisqhbn1HDvLqmsT4t17nn5JnF4VHmliBr8TiscVlMtX8lpFd20g0f48Sb/GcIpfU1une62ZYzh1EwcL9IQ3QNSJyYA3GpS7qqHbLGMJ565jmsrW8utcTuytJrDsN/RsLS49je4RfL4O1rwuYGa4gg/o638UCkDXjv29LtxQovgLyRhNVNHKnQAqa59xO/EwoYIn3892iB/2Q6H1Qyv3dK0+Ujvz7uW0unQf7ZbsSyimaLqBVvOZKhznZh//vUr+KOnLuE9n3gOlaro5u0ki8l807//Ifkpc6tU6mxrwW9mjcxRMtijHt5g1EmOT/XhuZtxVFX+Jz0/n8T+Ie+61m6jGfY5NuXwFxPNKxSUIC2cNxH8dFFXRZTPaeloty3P32sV/GGfA1YzGe6oWK0yfPH0AgDpZnJ6NmHo/gXrWVkt1NKHGxmsrSOJCL9jcGtkniNuRs3nXWGEH9FYjaKGB/eEkMyV8IKKObflShWnbyU0VYqoYcTfQPBX8wi5bar96jn9HnttHWAj0XRB1fDyjXS62/bkTBweu0VzZ7PZRBgNOJt2MGvl0lIKkXQBv/PagwCAH1zbesO0twu8Sq1Z6XBQZVDZabal4NdSOm382V02C5xWs+Lu1kiLX6xRvGSf1J79H1eUzwK4tJRCpljB8akOC37AgaXV/LoUwWIih5GAtugeaG7KlitWkClWdPc8DHWw2/bUrQReNBnQVQY7GXQZLvgnZauH1x4ZwZ4BtyEurILGpOUqtWZ/pzaLCT6HxdCZ1XrY3oKvoJwv6LYpyuEXyhWs5ssdT+kMeO24a8yH/7isXPD5Iu99U8q9XLTA7V7rq0oWk/layaYWpNnCm3/+/BFYbwnsYIe6bVP5Ei4vrep+qhrvc2HWYK+Vy8speB0WjAWc2D/orc1IEBhPzRq8RSAY8thFlU4nSWQla2S3rX2aod9jq3V0tiKq0fNdCy/bP4CTt+JYzSsbiHJiJo5RvwOjBnrgN4JP85mWhz0wxjAfz2FcR2dvyGNHPFvcVKfMF7mGfdqfHoDOdduemU2iyoBjGvP3nMmgC7FMsamfkBauLKVxYMgLIsL+YS9mohkxP7dDRBRYg4cUBpXdYFsKPvfRaWaNXI8U4bcXhLCcZ+50SgcAfvLAICpVhu9fbZ97rVYZfjQdxX27OxvdA8Bu2fDrhtwdGk4XkCqUdY1T7PfYwJg0i7cePjRC62Iwp1PdtqduxUEE3DMR0LUffrOcNzDKv7ycwv5haV1h/5AHVQZMh7eXZ088U8T3r0VUDzAymrVu8OZP/kGVFi6dZFsLvhJCHruiX0btTt6FCP9FEwH0uaz4yvmlttueX0giki7iZfu1j4NUyoDHDo/dghtyhH8jvHmOp1p4ZLTxPy4vpeSllVrpVLftyZk49g96Ff+dNWOtoc0YwU/mStIwbXnUHp/AtJU82fXylXOLePGffAs/97c/wk/88bfwmedu9excwun2fk+tKtG6zbYV/HYlmRxu+9vOT2ft0a2zOXwAsJhNePSuEXzj4jJybWwfvnM5DCLgpV0QfCLC7n53LaXDhV+P4DcrjV1K5uGwmuBr44fUjk40vlSrDKduxXFsV0D3vril7sYOZq3wJwVuoMdHXc5vk27eM7MJ/OdPn8bBYS/+zy/chwd2B/Ghz5/Dty4t9+R8eITf12JtL+SW0pZqS607gSGCT0SPEtFlIrpGRB9q8L6diD4jv/8jIpoy4rjNWFUV4dtQLFfb5lCVLM4YyevvHkG2WMG3L6+03O47l1dw95i/a+e1f8iLFxZWwRjD1ZU0HFaTrrUD/sS0McJfThUw7GvcvaiGEYMjaEDysE/ly4aUwQ567TCRcYLPI3meKgq6bXBYTYYN4VhJ5fHsdLQnoxmrVYY/ePICAi4r/v4X7sNPHRzEx999HAeHffjw58911CSvGZF0AX1tuu+DbmnuQ7txnt1At+ATkRnARwG8BsBhAO8gosMbNvtFAHHG2B0A/gLAn+g9bivUpHSUdtuGUwV47RbN9eZqeWBPCANeOz5/aq7pNnPxLE7dSuCVh4e6ck4AcM+EH9FMEXPxHM7OJXDnqF9XWWK/u4ngJ/MY1LlgC6x1AC8kjIvw9TZc1WM1mzDgtdca2PTCI3k+T5WIMBZwGrJGUK5U8fb//Sze/sSz+Ocfdz+N8vTFZZyZTeA3X30AAXm4kcNqxh++8S4srxbwv5+Z7vo5RVLFtsGW2n6fTmJEhH8/gGuMsWnGWBHApwE8tmGbxwB8Uv78cwBeQXpDtxYosUbmhGp+Om0EP13o6ig6s4nws8cn8M1LK03rtL8kd1M+ds9Y187rRXJU+8PpKM7NJ3H3uD6zNp/TArvFtCnlspzK667QAQCnzYyg22ZoSuPkTBx9LquuVFY9I35nbZFaL3PxHJxWM/rqelDG+lyGXP8zV8O1dN4/Ptt9wf+HH85g1O/AzxwbX/f6vbv68KrDQ/jkD24iW+xulK9k5ClvHlRai/9PP5rBb3/urO5za4QRgj8GYLbu6zn5tYbbyEPPkwBCjXZGRI8T0QkiOhEOK69F5zDGMN7nqi1WtSOk0DEzkuqsj04jfu7BSZiI8Mkf3Nz0XqXK8NkTs7h/KogJhddqBAeHvej32PB7XziPfKmqe7GYSOo2rffoYYxhKZmv+ZDoZTTgMCyCBqQJV8cm+3Snmzgjfodhjpm8TLb+3Ia89lqVmR6euRKBw2rCbz16ABcXV7vq8jkTzeB71yJ45wOTDZ8of/mle5DMlfBvp+a7dk6AFCi20wW1rrynZhL4Xoe6o7fcoi1j7AnG2HHG2PGBAfViQkT49//0MB5/6V5F23Nb23Z3X8lWofMLtvWM+J147Ogo/uHZmU056K+eX8JMNIv3vHiqq+dkMZvw5mPjKFaqGPY58BN7+3XvcyzgXCce4XQBhXLVsBvZiN9pWEonniliOpzRXX9fz4jficVk3pC8+Fwiu2ni2YDXjki6oHvR8JR8o3vJHQO1r7vFU+ekirWN0T3n+K4+HBrx4XMnm6dAO4GSQLDmyqtQ8NUUnajFCMGfBzBR9/W4/FrDbYjIAsAPIGrAsXVTqxJpF+EruJN3gg++aj8YgP/65IWaIOSKFfzfX7mIOwY9eNWdw10/pw+8cj8+8tid+NQv3m+IWdtowLEux8xTWEYJ/sYbih6en+UDT4wUfAeyRamTWy9LycKmyUuDXjvKVYZ4VnsOuVJluLyUwuERHw6OSCZ9Z7poyva1C0u4e9zftECAiPDmY2M4M5vo2hSxfKmCVKHctnKPV/DEFNbir+ZKDb31jcAIwX8OwD4i2k1ENgBvB/Dkhm2eBPDz8udvAfAt1otl/gY4rGa4beaWtfiFcgXJXKkngj/e58JvvGo/vnZhGX/45Yu4Fc3iP/3L85iL5/CHb7yrI+MM2+GwmvHuh6YMs2IeDTixkiqgUJZKUGeikuArTcu1378DqUJZcedyK07OxGE2EY5OGDdoxqhKomqVIZYpYGCDAA3IvQhhHU1KN6MZFMpVHBj2wmo2Ye+AB9e6ZNmwlMzj9GwCr24T3Lzh6ChMBHzx+e6kdXiQ2E4XrGbJT0dJgycArOaVF52oRbfgyzn5XwXwNQAXAXyWMXaBiD5CRG+QN/s7ACEiugbggwA2lW72kqCndbctvxl0c9G2nl96eA/e/dAu/N33buClf/ptfOvSMv7bG+7Eg3saLoPcdvCobTkp/Q5uxbIggi7Lhkb7NyLKPzWTwOERH1w24yIwPi9Yb2lmIldClW2eAcz/bvWYyF1ZkgapHByWBuzsG/TgynJ3BP+Zq9Ja3isODbbcbtDnwP27g3j6he7U5HOXVyXTzvo9dlUpnU4JviF/tYyxpwA8teG1P6j7PA/grUYcqxOE3K3NjZT4ZXQSk4nwkcfuwuuPjuLi4ioe2B3CgeHODDrpBeOyIM/Gs5gMuXArmsWIzwG7xZgS2HrB54KlhXKlitOzCbzteOM8slZ4CmZR5zpDpEmbPxd8PQu3fCrXrn7pqWv/kAdPnllAplCG296Z9APn2ekogm4bDih4onzk0BD+8MsXMRvLdryYgbu8KmnGDLptilM6Wz2Hf9sTauN10c0u21bcNxXEux+a2lZiDwB7Bz0AUEsRTEcytWlQRrDWbapPUC8tpZArVQxdsAXWmq82jo9US03wN8wQGOSCryOlMxfPwe+0wueQhGh3v/Q768R4xnoYY/jRdAwP7gkqqop6xSGpJ+WbFzsf5UdSypsxg+7GNuAbKVWqyBYrWzelsx1o5snOUfOLFahn0GuHz2HB5eVUbXHw0Ihxs3n7PXZYTKS7NJNXpRjRcFWPxWzCoNexaXykWmqOrhsCE7fdApfNrCvCn4tn16XY+OdGdfA2P24O84mc4vTl7n439g648c1LrTvUjSCs4sk/5FHmmLmqwtpdC0LwIXXbxlr46fBfbK9y+NsdImkW79XlFG5EMsiVKrhz1LhFUbOJMGxArfuJm3EMeu21JwYjMWIy15pz4+a/06Db1nRYvBJmN9hgrwl+ZyP8Z6elYj4161Uv2z+IH9+I1YoAOkU0XYTbZoZTgQ170G1DPFtqWxqrZpaHFoTgQ4qIShXWtCwunCrA00VbhZ3InaM+nJ9fxSnZtuCwgRE+IOXx9XabnpyJ4/iUcQ1X9Qz6HLqbo6KZIswmQqCBWPS5bIhpLMtkjMkR/lqaLei2wWk1dzzCP3UrAb/Tin1y2k8JD+0NoVCu4vlbic6dGKQUmpIFW0AKKpX46azN4966ZZm3Pe064ZZX87p92QWteWhvCLlSBX/69csIuW04aPA6xWTQVSv31MJiUkot3LurM3MHBr36I/xIuoig2wZTg1LdPh0RfjRTRL5UXRfhExEmgs6OR/hn5xK4e9yv6iZ7/+4gTAT84HpnW32imYLidT2l/T486BQRfgdp120rjfETgt9JHt43AJ/DgnCqgEfvGm4oWnqYCrmwkipo9lo5cVN68jhucP6eM+RzIJ4t6UpDRNKFpiM4gy7rpiEzSllpMn1svM/V0Qg/X6rg8lIKR8bUpff8TiuOjPnxw+udHd6uxDiNo9ReQaR0ukC7u+/yar7mqy7oDB67BX/+tnvwzgcm8YFX7jd8/7vkgSBaq0pOzsThtJpxeNTYVBNn0IDSyWi6eZu/ngi/2RrWaMA4D6BGXFpKoVxlmgz6HtwbwvO3Eh01U1OX0uGC3/r3W0vpOITgd4yafWmD0sxKlWElVag1xwg6xyOHh/BHbzrSkWqoKVnwtaZ1TszEcHTC39L3XA+DslGcnslc0UyxqXNjn8uGVKGMYrna8P1W1MZ7ejeWe+p/KmnF2bkEAODIeED19z64J4RyleF0h/L4lSpDLFvc1NXcDKUWyau1HL4Q/I7R6u4bSRdQqTIMCcG/reF1/TNR9bNdM4UyLi6mcLxD+XtAEk9AXzdsNF3cVIPP4X4uCQ0LtyspaW1ho+BzN1MjnDgbcXYuiZDbhlEN//eOTUipt04ZvElVfcpHngYV+ums5kqwW0wdKxARgg/AbjHDa7c0vPsuybXRIyKlc1vjd1rR57LipoYI/8xsApUqw71TncnfA/URvraF23ypgnSh3DTCD8oDQ7Tk8XmV2kY7icEOzQvmXFxcxeFRn6aqKL/Lir0DbpzqUITfrMmtGXaLGZ4mGlNPJ20VACH4NYKext22fDCFqNK5/dkVcuOWBsE/MRMHkbEOmRsJue0wm0hzhL9m5NUkpeOWRESpJ3s94VTj4T+1m5SB84I5lao0QlNPtdaxyT48fyvekXGMzZrcWhF0t2++6qStAiAEv0aoyS+DR/hi0fb2Z1fIhZsaUjonZuLYP+jtaORlNhH6PTbNEX60TddnXy3C1yj4DfbLI/xlHWmoZsxEMyiWq7ocWY/t6kM8W8KNiPrfeTsiLZrcmqFE8DvplAkIwa8x0KQOemk1D6uZmpa7CW4fpkJuLCRyyJeULzKWKlWcvBnDfbs7F91zBr0OzeLZToDUTl2qp9l4z5DbJj2VaLxJtYI7cerxjeJPZJ1I6/Cfd6MbYTNCbptI6WwVxgLS3M+Nj3+LiRwGvQ7D68IF3WffkAdVBlUDMs7OJZEpVgyZ7NWOIZ9dcz6cz2RuFpgE5Bm3WhZtm6V0TCaSG8aMj/CvLEt2zHeo6LDdyL5BD7x2S0cWbiPpIqxmUtURK0X47csyOzX8BBCCX2O8z4lssbJpUWs2njNsEIegt3B73asqfNy1eLloZcDr0JwP5znlZou2fNEwllG3aJsvVZDKl5v6SBnRIdyIy8spTAZduuYOmEyEuyf8ODeXNPDMJKQmN7uqBeWgbKDWak0hmRURflcYa2IGdSuWFYK/TZjqd8NqJlyWo0cl/OB6BAeHvbWUSCcZ8klzGUoV9bXy0XQBLpu5pUAGXFbVOfxaDX6T1MWgz6GrlLQZV5ZShkxUu2vMj8tLKU39B62IaphxHXJLnl2pQuNmsGpVem/LCj4RBYnoaSK6Kv/bMNFJRBUiOi1/bBx/uCXgPiH1s1VzxQrCqYKh3uyC3mE1m7C7342rCgW/UK7gxM14V9I5wNoiaESDb32rpiuO32lta97VaL9A8yeHQa8dywbn8IvlKm5EMjgwrD2dw7lr1I9ipVpLERmFlhnXQbmEs1ktfqpQBmOda7oC9Ef4HwLwTcbYPgDfRPPRhTnG2D3yxxuabNNTuBNgvTfIbNzYYdqC3rN/yKt4NN/ztxIolKt4aG93RklyewUtOXGeYmiFFsHnTwQBV2PBH/DakciWND2VNONWLINylenK33O4D8/5eWPTOkp+3htpZ+HS6S5bQL/gPwbgk/LnnwTwRp376xl+pxVeu2VdSueWwcO0Bb1n/5AXt2JZpJs8Vtfz/WsRmEhyX+wGvPRXSx4/qiDi1CT4sjg1S2nxqiA9XvsbmQ5LZZR8qpYedoVc8DosOL9gnOAzxqSft8qUTrtKKf56sMnN1Qj0Cv4QY2xR/nwJwFCT7RxEdIKIniWiN7baIRE9Lm97IhwO6zw9dYz1OdeZa01HpEhwSqR0tg084lOykPetSyu4d1dfR3Oq9fBGpmUNlTqRdHurXm0RvrR9n6vxz0Cp7a8aeK/Ebtn/SA9EhDtHfTg3v6p7X5zVfBnFSlVVSSbQ3kCNP031dXC9qK3gE9E3iOh8g4/H6rdj0tJzs+XnXYyx4wDeCeD/IaK9zY7HGHuCMXacMXZ8YGBAzbXoZt+Gx/0ry2kMeu1NH2cFtx9HJwIAgNOziZbbLSXzuLCwipcfbBbDGE/IbQMREFYZ4VerDDElOXyXesFPZIswUXP3xprgKxzQrYQbkQxCbhv8TW4yajky5sfFxVXD0k4RFaMN62lnoMYFv5MFAm1rnhhjjzR7j4iWiWiEMbZIRCMAGg6SZIzNy/9OE9F3ALwIwHVtp9w5Dg578e9nFpDKl+B1WHFl2ZhKAcHWIei2YVfIhdOzrWuzv31Z+lN++cHBbpwWAGm2bb9HfS3+ar6EcpUpyuEXy1XkSxXF5lzxbBF+p7VpH0ptloSCAd1KmQ5nMNWvP7rn3DXmR7FcxbWVtCGzkiMp3uSmTphdNgscVlPTRVteMtvsacoI9KZ0ngTw8/LnPw/gSxs3IKI+IrLLn/cDeDGAF3QetyPwOu0ryymU5ZX9fUP684iCrcU9E4G2Ef43L65gLODE/i7//rXUtUfa1OBzeGpKTZQfz5Raphh4GilicIS/22DBB4xbuI3UfHTU23iH5PnZjYhnWj9NGYFewf9jAK8koqsAHpG/BhEdJ6K/lbc5BOAEEZ0B8G0Af8wY25qCL7dxX1xM4eJiCvlSFffIKQDB9uFFEwEsrxaajudL5Uv47tUwHjk02JH5ta0Y8qm3V2jno8Phgp9Q4ZgZzxZrPjyN8DmssJio6bQ4tWQKZaykCoYK/u6QGy6bGRcWjMnja03pANITZquUTp+r8YhKo9DVw8sYiwJ4RYPXTwD4JfnzHwA4ouc43WK8z4lBrx0/nI6iIDdqdKtCQ9A9fuIOqa7+u1cjeMf9k5ve//qFZRTKVbzhnrFunxqGfHacVdkZ2q5WnqMpws+WMBZobhxoMpEiUzClcKMzIwXfZCIcGPbi0pJxgm8ibbn2Vj+reLZYs8DoFKLTtg4iwsv2D+C7V8L46vlF7O53Y8TvbP+NgtuKfYMejPod+M7lhktO+OLpeUwEnTg2GejuiUGyV4hmCiirWGBUG+GrEfxEtti2aCHksRuW0umE4APAwWEfLi2lDLFK5sPizRoi8WauvIBUltnpjm4h+Bt4/dFRrObLeO5mHG8+1v0IT9B5iAgvOzCI71+LbnLOvBXN4nvXInjTPWNdT+cAUoTPmLqceDhdBBFapl4AbYKvRIT6PTbDFm1vyoI/ZUBJZj2HRrxIZEuGGL1FWswOboeU0ml8Dolsqe3vUC9C8Dfwkn39+LWX34G33juO9z68u9enI+gQrz0yjHShjKdfWF73+id+cBNmIvzcg7t6cl5DNY955Qu30XQBQVf7iFOt4OeKFRTK1bZphqC78fAgLdyIZDDid8BpM3bE38FhqTrnogFpHV2C77EhX6o2HK4ey7ReLzECIfgbICJ88FUH8KdvParLqU+wtXnx3n6MBZz4h2dnao/5i8kc/vnHM3j90dGeDbzhx1Un+O1r8AHA67CCSLng1xqB2qV03HbDFm1vRDOGR/fAWkHGpUX9njpKmtya0axvgTEmLdqKlI5AYDwmE+GXX7IbP74Rw9dfWEa1yvD7X7yAKgM++Mr9PTuvtdm2ygU0mlHm62I2Ebx2S82zpR1rgt86wg95bMgUK6oGyzRjNtYZO3K/04qxgNOQhdtIqqhq0lU9NQO1DXn8TLGCUoUh6O7soq0IYQU7lp97cBc+c2IOv/7p09g35MHZuST+4HWHe2qWF3LbYCJ1fjrRdBGHR5U1FKnpto3XGoHa5/ABqVpoLKC9yCFXrCCSLtSca43m4LBXd4SfKZSRK1V05fCBzYLPvYg63dUvInzBjsVqNuGT77kPP3lgAIVSFf/9jXfhPS+e6uk58W5bNYuLanLKfqdV8dQrpd4u/OlCb1pnrsPutAdHvLgeTqNQ1v4komV4eT08pbPRApt/3UnjNEBE+IIdzqDPgY+9695en8Y6hnwOxXNiC+UKVvNlxTOX1RioJWrWyO1TOoB+Px1uTT4R7FSE70O5ynB9JaP4iWgjYV4C22QCWDuapez4oBn+fqcQEb5AsMVQMyeWpwaUCpAawedOmQFnu5SOdGwtg1vqqc2f6OtQhM8XbnXk8bUML6/HZbPA77RiKbn+hs5vAHwITqcQgi8QbDEGVUT40TbDyzciCX77WQCAdDPx2i2wWVrLRDsXSKXMxrKwW0xN5+fqZXe/GzazCZeWtOfx9dgqcIZ9DiytbhZ8Iu2pIqUIwRcIthhDPqlzVYmdLxcgpVUjPqcVq7mSoo7TRLaIgIKqkZoLpG7Bz2G8z9mxhjeL2YR9Qx5cXNQR4af0WxgP+x2bIvxwKo+Q2waLubOSLARfINhi8Fp8JSkSLRF+sVJFvtT+ZhJX0fkZctsNSel0ukKKWyxoJZIuIOCytn3qaUXDCH+1gIEOp3MAIfgCwZZDzWzbiMpFRJ6PV5LHV+Kjw+n36O+2nYvnOlaSyTk04kU4VdB8c1pezde6obUy7Hcgki6se4ILpwu133snEYIvEGwx1HTbRtIFOKwmuBVaEaixV4hliwgqdG8Meey6/HRW8yUkc6WOLdhyuMXCZY1R/nKqoLuSZtjvAGPrK3VWVoXgCwQ7klrpniLBl4aXK817qxH8RKakOMIP6fTTmY11tgafc3CEz7zQlsdfTuYxrNN2Y9gvff9SUipDLVWqWEnla693El2CT0RvJaILRFQlouMttnuUiC4T0TUi+pCeYwoE252Q2w6ziRTZK4RT6oy81oagtBbnUqWKVKGsPIfvsSOaLmq2H56NyTX4HY7w+z12DHjtmvL4lSpDOF3Q7bPEu5F538FiIo8q6/y1A/oj/PMAfgbAM802ICIzgI8CeA2AwwDeQUSHdR5XINi2mE2Efo9NcUpHi+C3i/D5VKw+hd4u/R4bivJNQgtrXbadnz9xUOMwlGimgEqVYUhnSmcy6ALRmvc/7z8Y78K16xJ8xthFxtjlNpvdD+AaY2yaMVYE8GkAj+k5rkCw3VE66jCSLmDAq7xEUKngx7PqvF30dtvOxXPw2i218+skh0Z8uLKcVjVkBpDy7IDUJ6EHh9WMsYBzTfBjnW04q6cbOfwxALN1X8/JrwkEgiYMeh1tUzqVKkMsU1QV4XsdFhChrWMmN/NS6u2i109nNpbFeNDVlaEzB4e9KJarNcFVCq+dN8I6e3e/e12EbzYRRrZCDp+IvkFE5xt8dCRKJ6LHiegEEZ0Ih8OdOIRAsOUZ8tnbLtrGMkVUmbquT5Nskdw+wpdtFRRW6fBGJK3dtrPxbMdLMjlrw1DU5fGXU1zw9VfT7Ol340Y4A8YYri6nMRVydbzpClAg+IyxRxhjdzX4+JLCY8wDmKj7elx+rdnxnmCMHWeMHR8YGFB4CIFgezHodSCaKaJYbp520NrmH3DZkGibw1fmlMnh56AlpcMYw2ws15WUBgDsHXTDYiJcUlmps7wq2R9o9dGp545BD1KFMubiOVxaStVuQp2mGymd5wDsI6LdRGQD8HYAT3bhuALBbQuPIsMtUiRrgq+uzb/PZa0tyjaDR/jthp9wahG+hpROLFNErlTpyoItANgtZtwx6FFdqbOymke/x25IJH5sVx8A4BsXl3ErlsUhuVy00+gty3wTEc0BeAjAl4noa/Lro0T0FAAwxsoAfhXA1wBcBPBZxtgFfactEGxveJ64VVpHbZctx68wwrdZTHBalTV02Swm+BwWTSmd2Xh3SjLrkYahqI3w84akc6Tj++C1W/DnX78CAHhob78h+22H3iqdLzDGxhljdsbYEGPs1fLrC4yx19Zt9xRjbD9jbC9j7H/oPWmBYLvDm69aVepwIy+1KR0pwm8tzPFsEX0uq6pF1H6PNj+dbjVd1XNwxIeFZB7JNk869Swa0HTFMZsIr75rGKlCGQNeO46O+w3ZbzvEABSBYAvChWVR7sZsRCRdgM0sRdZqCDiVpXSUNl1xQhr9dGp16F1atAXWe+M/sCek6Hvm4zk8sDto2Dn8xqsOIF+q4G3HJ7qyYAsIawWBYEsSdNvgsJqwkGgu+OFUAQNe5bYKnIDLhtV8CZVq865YyThNXU18yK3NT2c2lkPIbYPb3r3489CIXKmjMK2TzJWQKpQxZuBNadjvwF+/8xheur97xSlC8AWCLQgRYTTgxHwLwV9a1ea/EnBZwVjrWvxuRvhzXSzJ5Ax67ehzWRUv3M7L6wzjXVxn6ARC8AWCLcpYwFkTmkYsacwp88g93iKPr8YamRPy2BHLFls+OTRiLp7DeBfz94B0Qz047FNci89vvNwH53ZFCL5AsEUZ72se4TPGdET4kpA3q9RhjCGRLSkuyeSE3DYw1t6YrZ5qlWE+3r0a/HoOjfhwZSml6AbFvX6MTOn0AiH4AsEWZSzgRCRdRL5U2fTear6MbLGiLcLnfjpNFm5ThTLKVaYppQOo67ZdSRVQrFS7ntIBJKvkXKmCW3KVUCvm4zk4rCbFk8W2KkLwBYItCo8mG0X53ElTS4TPhbxZSieRUWerwOF+OmpKM2fj3S/J5BySu1uV1OPPJ3IYC3Ru3m63EIIvEGxRxgKSCDbK4y8mtQs+F/JmpZn8RqB2UHe/BsfMuR6UZHL2DXlgNhHOLyTbbjufyGHsNl+wBYTgCwRblpYRPhd8DSkdn8MKoua5drXWyJyQR71jJh980ovFUIfVjIPDXpyday34jDHcjGQw2SXrh04iBF8g2KIMeaXJV60ifC3zVU0mgt9pbbpom1Dpo8MJOK0wkboc/mwsi0GvHQ6FFg5Gc/d4AGdmE6i2WLiNZopYzZexp9/TxTPrDELwBYItisVswmjA0XBRcTaexZDPDrtFm1D2uWw1g7SN8Ahf7aKtyUQIuu2IqErp5HqSv+fcM+HHar6Mm9Hm3vjct37PgLtbp9UxhOALBFuY3f0eTEfSm16/FctiV1C7APmdzf104tkSiACfhulT/R6bupROD5qu6jk6EQAAnJlLNN1mOiz9/EWELxAIOkr9oIx6bkWzuiLjPpe16RCURLYIv9MKs0l9RUrIY1Oc0ilXqlhM5ntSg8/ZN+iFy2bGmdnmefzpcAY2i+m2r8EHhOALBFuavQNuZIqVda6Z+VIFS6t57AppF8qAy9a0LFOLrQIn6LYrjvAXk3lUqqynEb7ZRLhr1N86wo9kMBVyaboBbjWE4AsEW5g9A1Ia4Xp4La3DSxkndUT4/haOmdF0QXODUcitPMLvZQ1+PfdMBnBhYbVhgxsAXF5KYd9gdwaUdBoh+ALBFmavLPjTdYJ/IyIJpZ4Iv89lQypfRrmyeYRiJF2odc2qpd8j7beZeNYzVzMk622q5P6pIIrlKp6/ldj03mq+hFuxLA6PdmcEYafRO/HqrUR0gYiqRHS8xXY3iegcEZ0mohN6jikQ7CSGfHZ4HZZ1ro6Xl6TO0H1D2qNO3nzVKI8fTRdVD1XhDMjTt8Kp9mmduVgWJgJG/D0W/D1BmAj44fXIpvdeWJB+1kLwJc4D+BkAzyjY9qcYY/cwxpreGAQCwXqICEfG/Dg3v7aoeGkphYmgEx4d/vF8OHlsQ/qlXKkili3WmqjUwkczLrcYzciZi+cw7HPAZultosHnsOLImB8/nI5ueu+CLPh3CsEHGGMXGWOXjToZgUCwmSPjflxcXEWhLKVJLi+lcGBInwBxG4SNQ9Lj2RIYAwY0pnS41cOSAsGfjWe7bovcjIf29uP0bALpQnnd6ydnYhj1OzDoNWa0Ya/p1q2VAfg6EZ0kosdbbUhEjxPRCSI6EQ6Hu3R6AsHW5eh4AKUKw8XFFBLZIq6F07hnQt8M1EEvNzpbH+Fz4zOtET63elhKKhD8WK7n+XvOyw8OolRh+Nalldpr1SrDs9MxPLhX2QjE24G2gk9E3yCi8w0+HlNxnIcZY8cAvAbA+4nopc02ZIw9wRg7zhg7PjDQvdFfAsFW5fhUHwDgu1fC+NGNGBiD4jmszeA5+o25di74WnP4fqcVdoupbUqnVlqqo3nMSO7d1Yd+jx1fPb9Ye+3KSgqxTBEP6fxZbyXaJgEZY4/oPQhjbF7+d4WIvgDgfijL+wsEO55BrwP3TATw1QtLmIll4baZcfe4vgjf77TCaqZNVsbc6VJrlQ4RYdjvwNJq60XbmahUaTTVvzVSOmYT4dG7hvC5k3O1aV9fObcEInR15myn6XhKh4jcROTlnwN4FaTFXoFAoJA33zuOCwur+NzJObz+6KhmDx0OEaHfYzc8wgekhdvlNikd7l0zFdoaET4AvOvBXciXqvjHZ2dQrlTx+efn8NCeUG0hejuga0w8Eb0JwF8BGADwZSI6zRh7NRGNAvhbxthrAQwB+II8OMAC4J8ZY1/Ved4CwY7iZ49P4AfXIlhJFfCBV+43ZJ8D3kaCX4TNbILPoV0ahn0OnJ5NtNzmpmxINtW/dQT/4LAPjxwaxEe/fR3XVtKYjeXw+z99uNenZSi6BJ8x9gUAX2jw+gKA18qfTwM4quc4AsFOx2Yx4WPvutfQffZ77Jty7SureQx47bomOw37HVi6kAdjrOl+bkYzCLpt8GswaOsk/+NNR/CWv/kBvnh6AW8+No5XHh7q9SkZii7BFwgEty/9HhvOz683DVtM5jGiYYpWPUM+B4rlqjQIvYlFw81IFlM6OoU7xZDPgac/8DKsrBYwEbz9RxpuRFgrCAQ7lAGvHdFMcd3wj8VkTtPYxHpqpZktKnVuRjNbKn9fj8NqxmTIte3EHhCCLxDsWIZ8DlSqrLZQyxjDYjKPUZ3jBmvNV00WbnPFChaT+S2Vv98pCMEXCHYovOlpTp6ZG8+WUChXNc3JrWdCnv3aaFJX/etC8LuPEHyBYIcyLg8e4a6VC7Lwjwb0Cf6Axw6n1dxU8G/IE7x2b9GUznZGCL5AsEMZk1M33F+fD0Yf1uleSUSYDLqaCv7lpTSIgL2DQvC7jRB8gWCH4rZbEHTbahH+jNwMpWewCmci6MJsE8G/spzCZNAFl00UCXYbIfgCwQ5mvM9ZE/zr4Qz6XFYENU67qodH+Btn8QLA5eUUDujw8hdoRwi+QLCDmQy6atO0rofTtQlbetkVciFbrGxy4yyUK7gRyeDAsBD8XiAEXyDYwRwe9WEunkMyW8J0OI09A8bk1fn4xRuyhQLn+koGlSrDfhHh9wQh+ALBDubOUcl18+mLy4iki7Wv9cIjeD6OkXN5WfpaCH5vEIIvEOxg7pJH9/1/374GQPKFN4Jhn2PTLF4AODObhNNqxl6DniQE6hCCLxDsYEIeO47v6sN0JINBrx2HRoyZ3UpEODjsxeUNgv/8bAJ3j/thMQvp6QXipy4Q7HA++Kr92D/kwe+/7jDMJuP8Yw7Igl+RvXoK5QouLqzinsmAYccQqEMIvkCww/mJvf34+gdehtcfHTV0v8d3BZEqlHFxUcrbP38rgWKlinsnjUkbCdQjBF8gEHSEB/YEAQDPTkcBAP9xJQyLifDQNhoKfruhS/CJ6E+J6BIRnSWiLxBRoMl2jxLRZSK6RkQf0nNMgUBwezDid2Iq5MIzVyNgjOFrF5ZwfKoPXsfWGnqyk9Ab4T8N4C7G2N0ArgD48MYNiMgM4KMAXgPgMIB3ENH2mhsmEAga8rq7R/Hdq2F89sQspsMZvOXeiV6f0o5Gl+Azxr7OGCvLXz4LYLzBZvcDuMYYm2aMFQF8GsBjeo4rEAhuD97xwCQcFjN++9/OYSzgxE8fGen1Ke1ojHQvei+AzzR4fQzAbN3XcwAeaLYTInocwOMAMDk5aeDpCQSCbjMWcOLj7z6OJ8/M4xcf3gOnzdzrU9rRtBV8IvoGgOEGb/0uY+xL8ja/C6AM4J/0nhBj7AkATwDA8ePHNzsvCQSC24qH9/Xj4X39vT4NARQIPmPskVbvE9EvAHgdgFewRtZ4wDyA+sTduPyaQCAQCLqI3iqdRwH8FoA3MMYam18DzwHYR0S7icgG4O0AntRzXIFAIBCoR2+Vzl8D8AJ4mohOE9HfAAARjRLRUwAgL+r+KoCvAbgI4LOMsQs6jysQCAQClehatGWM3dHk9QUAr637+ikAT+k5lkAgEAj0ITptBQKBYIcgBF8gEAh2CELwBQKBYIcgBF8gEAh2CNS4dH5rQERhADMav70fQMTA07kdENe8/dlp1wuIa1bLLsbYQKM3trTg64GITjDGjvf6PLqJuObtz067XkBcs5GIlI5AIBDsEITgCwQCwQ5hOwv+E70+gR4grnn7s9OuFxDXbBjbNocvEAgEgvVs5whfIBAIBHUIwRcIBIIdwm0n+O0GohORnYg+I7//IyKaqnvvw/Lrl4no1V09cR1ovWYieiURnSSic/K/L+/6yWtEz+9Zfn+SiNJE9BtdO2md6PzbvpuIfkhEF+Tft6OrJ68RHX/bViL6pHytF4lo0zztrYqCa34pEZ0iojIRvWXDez9PRFflj59XfXDG2G3zAcAM4DqAPQBsAM4AOLxhm18B8Dfy528H8Bn588Py9nYAu+X9mHt9TR2+5hcBGJU/vwvAfK+vp9PXXPf+5wD8K4Df6PX1dOH3bAFwFsBR+evQDvjbfieAT8ufuwDcBDDV62sy6JqnANwN4FMA3lL3ehDAtPxvn/x5n5rj324RvpKB6I8B+KT8+ecAvIKISH7904yxAmPsBoBr8v62OpqvmTH2PJOsqgHgAgAnEdm7ctb60PN7BhG9EcANSNd8u6Dnml8F4Cxj7AwAMMaijLFKl85bD3qumQFwE5EFgBNAEcBqd05bF22vmTF2kzF2FkB1w/e+GsDTjLEYYywO4GkAj6o5+O0m+I0Goo8124ZJw1eSkCIeJd+7FdFzzfW8GcApxlihQ+dpJJqvmYg8AH4bwH/rwnkaiZ7f834AjIi+JqcCfqsL52sEeq75cwAyABYB3ALwvxhjsU6fsAHo0SHdGqZrAIrg9oCI7gTwJ5Aiwe3OfwXwF4yxtBzw7wQsAB4GcB+ALIBvEtFJxtg3e3taHeV+ABUAo5DSG98lom8wxqZ7e1pbm9stwlcyEL22jfy45wcQVfi9WxE91wwiGgfwBQDvZoxd7/jZGoOea34AwP8kopsAfh3A7xDRr3b4fI1AzzXPAXiGMRZh0mzppwAc6/gZ60fPNb8TwFcZYyXG2AqA7wO4Hfx29OiQfg3r9SKGygUPC6SFit1YW/C4c8M278f6RZ7Pyp/fifWLttO4PRa29FxzQN7+Z3p9Hd265g3b/FfcPou2en7PfQBOQVq8tAD4BoCf7vU1dfiafxvA/5E/dwN4AcDdvb4mI665bttPYPOi7Q35990nfx5Udfxe/wA0/MBeC+AKpJXu35Vf+wiAN8ifOyBVZ1wD8GMAe+q+93fl77sM4DW9vpZOXzOA34OU5zxd9zHY6+vp9O+5bh+3jeDrvWYA74K0SH0ewP/s9bV0+poBeOTXL8hi/5u9vhYDr/k+SE9tGUhPMxfqvve98s/iGoD3qD22sFYQCASCHcLtlsMXCAQCgUaE4AsEAsEOQQi+QCAQ7BCE4AsEAsEOQQi+QCAQ7BCE4AsEAsEOQQi+QCAQ7BD+f0qiFEiXD3OVAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAw40lEQVR4nO3dd3Rc5Z3/8fczGhVLltWbLVnFlixL7pYb2AYXDDaLIUsJHRIIu0nYVLKpm2VTztmQzbKbAAmwEAKB0ALBBBt3A+6WjZuKbVm9d8nqmpnn94fG/ISx8UiamTvl+zpHx6OZO3O/1xp9dOe5T1Faa4QQQng/k9EFCCGEcA4JdCGE8BES6EII4SMk0IUQwkdIoAshhI8wG7Xj2NhYnZaWZtTuhRDCKx0+fLhZax13sccMC/S0tDTy8/ON2r0QQnglpVTFpR6TJhchhPAREuhCCOEjJNCFEMJHSKALIYSPkEAXQggfIYEuhBA+QgJdCCF8hGH90IUQl1fT3suhslZq2ntRClKiQlmUEU18eIjRpQkPJIEuhAfaW9LM73aUsK+05TOPKQUrp8XzjVWZzE6JdH9xwmNJoAvhQbr6Lfzk7RP87WgtSREhfO/aaayYFk9GXBg2rTnb2M2WwnpeOVDJTU/t4b4lafxwXTbB5gCjSxceQAJdCA9R2dLDA386RGlzN99YlcnXrp5CSOCng3pmcgQzkyN4aHkGv9lymhf2lnOsup1n780jdnywQZULTyEXRYXwAOXN3dz69F6auvp56csL+c41WZ8J8+HCQwJ5dH0uv79rHkV1ndzxzH6azvW7sWLhiSTQhTBYXUcvdz67nwGLjVcfWswVU2Mdfu7amUn88f6FVLf1cvf/HeBc36ALKxWeTgJdCAP1DVp56MXDdPZZ+PODi8hOnDDi11gyJYZn782jpKmLb756FKtNFn73VxLoQhhEa82P3jrBydoO/ueLc8idGDHq11qaGcuj63PZUdzI/2w77cQqhTeRQBfCIBuO1fLWxzV8c1Umq3MSxvx69yxO5db5yTy5s4RD5a1OqFB4Gwl0IQxQ39HHv/3tJPMmR/LwiqlOe91/X59LSnQo33r1qLSn+yEJdCHcTGvND986zqBV85vb5mAOcN6v4fhgM/992xxqO3p5fOsZp72u8A4S6EK42ZbCBnaeauK7a7JIjw1z+uvPT43irkWTeWFvGSdrOpz++sJzSaAL4UZ9g1Z+9m4h0xLCuf+KNJft53trsokOC+InfzuJTXq9+A0JdCHc6Pe7zlLT3st/3Jjr1KaWC0WEBvKDtdM5WtXO30/UuWw/wrNIoAvhJk3n+nnmw1Kun5XE4owYl+/vC3MnkZ0Yzn9tPsWAxeby/QnjORToSqnrlFKnlFIlSqkfXOTxyUqpnUqpj5VSx5VS65xfqhDe7aldJQxYbTyyZppb9hdgUnx/bTaVrT28cqDCLfsUxrpsoCulAoAngbVADnCHUirngs1+AryutZ4L3A485exChfBmNe29vLy/klvnJ7vkQuilXJ0Vx+KMaH63o4SeAYvb9iuM4cgZ+kKgRGtdqrUeAF4FbrxgGw2cH7McAdQ6r0QhvN9vtw11IfyXVZlu3a9SikfWTKOle4C/HKxy676F+zkS6JOA4e+Eavt9wz0K3K2UqgY2Av/ilOqE8AE17b389Ug1dy6azKTIcW7ff15aNAvTo3nmw7P0W6xu379wH2ddFL0DeEFrnQysA15SSn3mtZVSDyml8pVS+U1NTU7atRCe7bmPygD4yvIMw2p4eMVUGjr7eetIjWE1CNdzJNBrgJRh3yfb7xvuAeB1AK31PiAE+MwcoFrrZ7TWeVrrvLi4uNFVLIQXae8Z4NVDlayfPdGQs/PzlmXGMis5gt/vOovFKj1efJUjgX4IyFRKpSulghi66Lnhgm0qgVUASqnpDAW6nIILv/fivgp6Bqz801VTDK1DKcXXrp5CZWsPWwsbDK1FuM5lA11rbQEeBjYDRQz1ZilQSv1MKbXevtl3ga8opY4BfwHu11rL8DTh1/oGrbywt5yV2fFMSww3uhyuyUkkOWocf9xbbnQpwkUcWlNUa72RoYudw+/76bDbhcCVzi1NCO/2ztEaWrsHeMjAtvPhAkyK+5ak8cuNRRTUdoxp/nXhmWSkqBAuoLXmxX0VTEsIZ1F6tNHlfOK2vBTGBQbwwp5yo0sRLiCBLoQLHKlsp6C2k3uWpKKUMrqcT0SEBnLz/Em8c6yWli5ZVNrXSKAL4QIv7SsnPNjMF+ZeOGTDePdfkcaAxcZr+TLQyNdIoAvhZM1d/Ww8Uc/N85MJC3boMpVbTY0PZ2F6NK8fqkL6LvgWCXQhnOy1Q1UMWG3cvTjV6FIu6Y6FKZS39LC/VNYe9SUS6EI4kc2m+cvBSq6YEsPU+PFGl3NJa2ckMSHEzKuHKo0uRTiRBLoQTrS/tIXqtl6+uCDl8hsbKCQwgC/MncSmk/W09wwYXY5wEgl0IZzojcPVhIeYuTY30ehSLuuLCyYzYLHx9scyv4uvkEAXwkk6+wbZdLKOG2ZPJCQwwOhyLitn4gRmJ0fw2iHp7eIrJNCFcJL3jtfRN2jj1vnJRpfisFvmJ1Ncf46iuk6jSxFOIIEuhJO8kV/F1PjxzEmJNLoUh10/ayJmk+Jv0uziEyTQhXCCksYujlS2c+v8ZI8aGXo50WFBXD0tjneO1mK1SZ90byeBLoQT/PVINQEmxRfmed7I0Mu5ae4k6jv7OFDaYnQpYowk0IUYI5tNs+FoLcsyY4kPDzG6nBFbPT2B8GCz9HbxARLoQozRkco2atp7uXHORKNLGZWQwADWzkxk08l6egdkzVFvJoEuxBi9c7SWYLOJa3I8v+/5pdw0dxJd/Ra2FclqRt5MAl2IMbBYbWw8Ucfq6QmM98CJuBy1OD2GpIgQ3jlaa3QpYgwk0IUYgz1nW2jpHuCG2d7Z3HKeyaRYOyOJD880ca5v0OhyxChJoAsxBhuO1hIebObqaXFGlzJm189KYsBiY3tRo9GliFGSQBdilPoGrWwpqOe6GYleMdT/cuamRJIUEcLfj9cZXYoYJQl0IUZp16lGzvVbWO+lvVsu9Emzy2lpdvFWEuhCjNKGY7XEjg9iSUaM0aU4zfWzkhiw2qS3i5eSQBdiFHoGLOwobmTdzCTMAb7za3S+2eW94/VGlyJGwXfeiUK40a5TTfQN2rhuhvf2Pb8Yk0mxbuZQs0unNLt4HQl0IUZh08l6YsKCWJgWbXQpTrdu5lCzy3ZpdvE6EuhCjFDfoJUdRQ2syU3wqeaW8+amRDJRml28ku+9G4Vwsd1nmukesHLdjCSjS3EJk0mxJjeR3SVNMreLl5FAF2KENp2sZ0KI2ad6t1xoTU4CfYM2PjzTZHQpYgQk0IUYgUF7l77VOQkEmX3312dBejQR4wLZUiDt6N7Ed9+RQrjAvrMtdPQOstZHm1vOCwwwsSo7nu3FDVisNqPLEQ6SQBdiBDadrCcsKIBlmbFGl+Jya3ITaO8Z5FB5m9GlCAdJoAvhIKtNs7WwnhXZ8T4xd8vlLM+KI9hsYkuh9HbxFhLoQjjoUHkrzV0DPt/ccl5okJllmbFsKWhAa1lA2htIoAvhoPdP1hNsNvnEVLmOWpOTSE17LwW1nUaXIhwggS6EA7TWbC1sYFlmHGFevDLRSK2aHo9JwZZC6e3iDSTQhXBAUd05atp7WZOTYHQpbhUzPpi81Gi2FEg7ujeQQBfCAduKGlAKVmTHG12K263JTaC4/hyVLT1GlyIuw6FAV0pdp5Q6pZQqUUr94BLb3KaUKlRKFSilXnFumUIYa1tRA3NTIokLDza6FLe7xv6pZHuxNLt4ussGulIqAHgSWAvkAHcopXIu2CYT+CFwpdY6F/iW80sVwhj1HX0cr+5gtZ81t5yXGhPGlLgwdhTLWqOezpEz9IVAida6VGs9ALwK3HjBNl8BntRatwForeUnL3zG+dV7rpnun4EOsGp6AvtLW+jqtxhdivgcjgT6JKBq2PfV9vuGywKylFJ7lFL7lVLXXeyFlFIPKaXylVL5TU0y6Y/wDtuKGkiNCWVq/HijSzHMyux4Bq2a3TJZl0dz1kVRM5AJXA3cATyrlIq8cCOt9TNa6zytdV5cnP/05RXeq7vfwt6SFlZPT0ApZXQ5hpmfGsWEEDPbi+TDtydzJNBrgJRh3yfb7xuuGtigtR7UWpcBpxkKeCG82kdnmhiw2j65MOivAgNMXDUtnp2nGrHZZNSop3Ik0A8BmUqpdKVUEHA7sOGCbf7G0Nk5SqlYhppgSp1XphDG2FrYSMS4QPJSo4wuxXCrsuNp7hrgeE2H0aWIS7hsoGutLcDDwGagCHhda12glPqZUmq9fbPNQItSqhDYCXxPa93iqqKFcAerTbOjuIGV2fE+udTcSF2VFYdJwQ5Za9RjOTSGWWu9Edh4wX0/HXZbA9+xfwnhEw5XtNHWM8hqP+7dMlxUWBDzJkexvbiR76yZZnQ54iLktEOIS9hW1EBggGJ5lu/Pfe6oldPjKajtpL6jz+hSxEVIoAtxCdsKG1icEUN4SKDRpXiMVdlDn1Z2npLeLp5IAl2Iizjb1EVpc7ff9265UFbCeCZFjpPuix5KAl2Ii9hmny52lbSff4pSilXT49lT0kzfoNXocsQFJNCFuIhtRQ3kJE1gUuQ4o0vxOCuz4+kdtLKvVDqyeRoJdCEu0NLVz+GKNmluuYTFGTGMCwxghzS7eBwJdCEusKO4EZtGAv0SQgIDWJoZy47iRllr1MNIoAtxge1FjSRMCCZ34gSjS/FYK7PjqWnv5VTDOaNLEcP4z+KIBukZsJBf3kZ5SzeDVk1UaCCzkiOYEjferyd78lT9FisfnWli/ZxJ8vP5HCumDa3ctKO4kexE+cPnKSTQXaSksYsnd5aw8UQd/RbbZx6fEhfGPYtTuWPRZILNAQZUKC7mQGkr3QNWVk/3v6XmRiIxIoScpAnsLG7ka1dPNbocYSeB7mSDVhtP7CjhiZ0lBAWYuC0vhTW5CUxLCCfYHEDDuT7yy9v465FqHn23kOf2lPHYzbNZMiXG6NIFsL2ogZBAE1dOldGhl7MyO56ndpXQ3jNAZGiQ0eUIJNCdqqNnkIdeyudAWSv/OHcSP75+OjHjP70GZURoIFkJ4dyxMIWPzjTz7xsKuPP/9vMvKzP59upM+ZhvIK0124sbuXJKLCGB8qnpclZkx/PEzhI+ON3EjXMuXPNGGEEuijpJS1c/tz69lyOVbTz+xdn89xfnfCbMh1NKsTwrjve+sZSb5yXz2+1n+O4bxxi4SPOMcI/TDV1Ut/XKYCIHzUmJJDosiJ2y1qjHkDN0J+jqt3D/Hw9R2drDn760kCtG8HE9NMjMr2+ZxeToUP5762n6Bq389va5Ml2rAc6var8yW9rPHRFgUlyVFceuU41YbZoAk3y6NJqkxhhZbZqvvXyEwrpOnrpr3ojC/DylFN9YlclPrp/OxhP1/PCtE9K/1wDbixqZMWkCiREhRpfiNVZkx9PWM8jRqjajSxFIoI/Zb7ef4cPTTfz8xhmszB7bR/UHl2XwjVWZvHG4mt9/cNZJFQpHtHYPcKSy7ZPZBIVjrsqMI8Ck2CHNLh5BAn0M9pQ089sdZ7h5XjJ3LEy5/BMc8O3VmdwweyK/3nxK2ibdaGdxI1rDKumuOCIRoYHMT41iR3GT0aUIJNBHrbvfwr++eZz02DB+cdMMp/VOUUrx2M2zyEmawDdf/Zja9l6nvK74fNuLG4gPD2bGxAijS/E6K7PjKarrpK5D3qtGk0AfpV9vPkVtRy+P3TyLcUHO7eI2LiiAp+6ah9Wm+c7rR7HKKusuNWCx8eHpZlZmx2OSC3sjdv4i8k45SzecBPoofFzZxp/2lXPfkjTy0qJdso/UmDAeXZ/L/tJWnvmw1CX7EEMOlrXS1W+R7oqjlBk/tOiFtKMbTwJ9hLTW/PzvhcSOD+aRa127UO4t85NZNzORx7eepqSxy6X78mfbixsINptYKqNDR0UpxcpsWfTCE0igj9DGE/UcqWznkTVZjA92bTd+pRT/sX4GIYEmfvy2dGV0Ba0124sauWJKjNObzvzJ+UUvDpS1Gl2KX5NAH4F+i5X/fL+I7MRwbpnvnF4tlxMXHsyP1k3nQFkrb+RXu2Wf/qSksYvK1h5pbhmjJVNiCAk0Sc8sg0mgj8Brh6qoau3lR+umu3VU3G15KSxMi+aXG4to6ep32379wXZ7AMno0LEJCQzgiimy6IXRJNAd1G+x8vtdZ1mQFsWyTPe2tZpMil9+YQZd/RYe33barfv2ddvta4dOlLVDx2xFdjyVrT2cbeo2uhS/JYHuoDcPV1PX0cc3VhkzI2JmQjh3LZrMKwcqOS2rxDhFW/cAhyvaZDCRk/z/7ovS7GIUCXQHDFptPLXzLHNSIg3tCfGt1VmEBZv5xXtFhtXgS3adHlo7VNrPnWNS5DimJYRL90UDSaA74J2jtdS09/KNVVMNna88OiyIb67K5MPTTew8Jb80Y7WtqJHY8cHMmiSjQ51lRXY8h8pb6ewbNLoUvySBfhlaa57fXUZWwvhP1lE00r1L0kiLCeVXm4qxyQjSURu02vjwVBMrs+NkdKgTrcyOx2LT7D7TbHQpfkkC/TIOlrVSWNfJ/Veke8RqQkFmE9++Jovi+nO8d6LO6HK81qGyVs7J6FCnmzc5kohxgdLsYhAJ9Mv4455yIkMD+cJcz1li64ZZE5mWEM7jW09jscoKR6OxvbiRoAAZHeps5gATy+2LXsgnSPeTQP8c1W09bCms5/YFkz1qFKHJpPj2NVmUNnfz9sc1RpfjdYZGhzawZEoMYS4e7euPVmbH0dw1wPGaDqNL8TsS6J/jpf0VKKW4d0mq0aV8xrW5CcxKjuB/t5+RdUhH6GxTF+UtPayW7ooucVVWPEohzS4GkEC/hAGLjTfzq1k9Pd4jB50opfjummlUt/XyxuEqo8vxKlsKh9YOXZ0j7eeuEB0WxLzJUdIf3QAS6Jewo7iBlu4Bbl8w2ehSLml5ZiyzUyL5wwdnpS19BLYUNDArOYKkCM/7Q+0rVmbHc6Kmg8bOPqNL8SsS6Jfw2qEqEieEsDwrzuhSLkkpxcMrplLV2suGY7VGl+MVGjv7OFrVzjXSu8Wlznfx3XVKFr1wJ4cCXSl1nVLqlFKqRCn1g8/Z7mallFZK5TmvRPer6+jlg9NN3DI/2a2TcI3Gqux4shPDeWrXWelV4ICtRUPNLWtyEw2uxLdNTwonKSJE2tHd7LKBrpQKAJ4E1gI5wB1KqZyLbBcOfBM44Owi3e3N/GpsemiWQ09nMim+tmIqJY1dbC6oN7ocj7e1sIHJ0aFkJYw3uhSfppTi6mnx7C5plov2buTIGfpCoERrXaq1HgBeBW68yHY/B34FeHWjmc2mef1wFUsyYpgcE2p0OQ65fmYS6bFhPLGzRKYu/Rxd/Rb2lrSwJifBIwaJ+bqV2fF09Vs4VC6LXriLI4E+CRjejaLaft8nlFLzgBSt9Xuf90JKqYeUUvlKqfymJs9sW8uvaKOqtZdb85KNLsVhASbFV6+aQkFtJ7tOe+b/qyf44FQTA1Yb10jvFre4cmoMQWaTNLu40ZgviiqlTMB/A9+93LZa62e01nla67y4OM+82LjhWA0hgSau9bI21pvmTmJiRAi/33nW6FI81pbCeqLDgpifGmV0KX4hNMjM4owY6b7oRo4Eeg0wvDE52X7feeHADGCXUqocWAxs8MYLo4NWG+8dr2P19ASvG0EYZDbx5aXpHCxv5WhVu9HleJxBq40dxY2szI7HHCCdu9xl5bQ4Spu7KW+WRS/cwZF39iEgUymVrpQKAm4HNpx/UGvdobWO1Vqnaa3TgP3Aeq11vksqdqHdJc209Qxy4xzPmbdlJG5fOJnwEDPPflRqdCke50BpK+f6LKyR5ha3Wpk99P8tzS7ucdlA11pbgIeBzUAR8LrWukAp9TOl1HpXF+hOG47WMiHEzPIs75ywaXywmTsXTWbTiTqqWnuMLsejbC2sJyTQxLJMz2zq81WTY0KZEhcm8/e7iUOfPbXWG7XWWVrrKVrrX9rv+6nWesNFtr3aG8/OewesbCmoZ93MJILNnjMR10h96Yp0TErx3O4yo0vxGFprthY2sCwzzqMmWfMXK7PjOVDaSne/xehSfJ40JtptL26ge8DK+tkTjS5lTBIjQlg/ZyKv51fR3jNgdDkeoaC2k9qOPundYpAV2fEMWG3sLpFFL1xNAt3u3WO1xIcHsygjxuhSxuwryzLoGbDy8oFKo0vxCJtO1hFgUqzKltkVjbAgLZrwYLP0dnEDCXSGmls+ON3E2hmJHj/U3xHTkyawLDOWF/aW02+xGl2OobTWbDxRz+KMaGLGBxtdjl8KDDCxLCuWnacaZeCbi0mgAx+cbqJv0OZ1fc8/z0PLM2g61887R/170q5TDecoa+5m3cwko0vxayumxdPQ2U9BbafRpfg0CXRgc0E9kaGBLEyPNroUp1k6NZbsxHCe/bDUr8+KNh6vw6RgTY7v/LH2RlfbZ1+UZhfX8vtAH7DY2FbUwOrpCT414EQpxUPLMzjT2MUHfjwdwMaT9SxMjyYuXJpbjBQXHszslEh2SPdFl/KdBBul/aUtnOuzcJ0PNbec9w+zJpIwIdhvBxqdaThHSWOXNLd4iJXT4jla1U5zV7/Rpfgsvw/09wvqCQ0KYGmmdw4m+jxBZhP3X5HOnpIWCmr9b8He907UoRQ++cfaG12Tk4DWsM2+BKBwPr8OdKtNs6WggRXT4gkJ9M0BJ3cunExoUADPfeR/A402nahnQWo08RNCjC5FMLToxeToUN6Xeftdxq8D/ePKNpq7+rl2hu+ewUWEBnJbXgobjtVS3+HVU9WPSEljF6cazrF2pu/+bL2NUoprcxPYW9JCZ9+g0eX4JL8O9M0F9QQFmFgxzbfn93hgaTo2rXlhb7nRpbjNphN1AKydIe3nnuS6GYkMWG3S28VF/DrQtxc3sigjmvCQQKNLcamU6FDWzkji5QMVdPnJfBrvnahj3uRIEiOkucWTzE2JIi482K+XS9x0os5lv4d+G+gVLd2UNnWz0k+Ggz+4LJ1zfRZeP1R1+Y293Kn6cxTXn/P6eXl8kck01Oyy61QTfYP+N4q5uL6Tr758hL+4aFoOvw308/Mz+0ugz50cRV5qFM/vKcNi9e1Fezccq8Gk4PpZEuie6NrcRHoGrHx0xv8m63p5fyVBZhO3zHfNEpd+HegZcWGkxoQZXYrbPLgsg+q2XjYX+G63Ma017xyt5cqpsTKYyEMtzohhQoiZ90/6V7NLV7+Ft45U8w+zkogKC3LJPvwy0Lv7LRwobWXlNP84Oz/vmpwEUmNCeeYj350O4EhlG9VtvdzkpatO+YPAABOrcxLYXtzAoI9/Whzu7Y9r6B6wcs/iVJftwy8DfU9JMwNWm980t5wXYFI8uDSdY1Xt5Fe0GV2OS7xztJZgs4k1uTL3uSe7NjeR9p5BDpa1Gl2KW2it+fO+CmZMmsCclEiX7ccvA33nqUbGB5vJS/Odybgcdcv8FCJDA3n2Q9+bDmDQauPv9kW+fb3nkrdbnhnHuMAAv2l2OVjWyqmGc9y9KBWlXDdFt98FutaancVNLMuMJcjsd4fPuKAA7l6UytaiBsp8bCX23SXNtHYPcOMcuRjq6cYFBbAiO45NJ+ux2nyz+W+4F/dVMCHE7PIF6P0u0QrrOqnv7GOFnzW3DHfvFakEmkw872Prjp5f5PsqHx8o5itumDWR5q5+DpS2GF2KS9V39LG5oJ4vLkhx+Zq2fhfoO4qGuite7ce/9PHhIdw4ZyJvHK6irds31h3t6rfw/sl6rp/l3Yt8+5MV2fGEBQXw7nHfXoTllYOVWLXmbhdeDD3P7wL9wzNNzJwUQXy4f48g/MryDPoGbfx5f4XRpTjFe8dr6R20csv8FKNLEQ4KCQxgTW4im07WM2Dxzd4uAxYbrxyoZMW0eLd0kfarQD/XN8iRynaW+eBUuSOVlRDOVVlx/GlfhU+M2Hs9v5opcWHMmxxpdCliBP5hVhLtPYPsKfHNQUabTtbR3NXPvUtcf3YOfhbo+862YLVplmX6b3PLcF9ZlkFzVz8bvHzd0ZLGLg5XtHFbXopLexAI51uWGceEEDPvHvPu9+ClvLivgrSYUJa7KXP8KtA/OtNMaFAA81IjjS7FI1w5NWZo3VEvH2j0xuEqAkyKL8yTwUTeJshsYu2MJLYUNvjEJ8XhTtZ0cLiijXuWpGEyuedEw68CfXdJM4szYuSimZ1Siq8sG1p3dJeXrjtqsdp460gNK6bF+/11EW91w+yJdPVb2OVj642+tK+CcYEBLpu35WL8JtCrWnsoa+6W9vML3DDbvu6olw40+uB0E03n+rktz32/NMK5FmdEEzs+iHeP1RlditO09wzwt6M13DR3EhHj3DfIzW8C/fzMbtJ+/mlBZhMPLE1n79kWjlR633QAfzlYSez4YL8eV+DtzAEm1s1MYltRg8+sZPR6fhX9FpvbLoae50eB3sTEiBCmxPnP7IqOumtRKlGhgfxu+xmjSxmRqtYethc3cvuCFAID/Oat7JP+cV4y/RYbG497/1m6xWrjxX0VLEyPZnrSBLfu2y9+C6w2zZ6SZpZmxkoviIsICzbz4LIMdp5q4nh1u9HlOOzlA5Uo4M5Fk40uRYzR7OQIpsaP583D1UaXMmZbChuobuvlgaXpbt+3XwT68ep2Ovss0tzyOe5dksqEEDO/21FidCkO6Ru08tqhSq7JSWBi5DijyxFjpJTi5nnJ5Fe0Ue7lcwz930elpMaEsnq6+2f89ItA/+hMM0rBlVPlguilhIcE8uWl6WwtbKCwttPoci7rveN1tPUMct+SNKNLEU7yhbmTMCn46xHvPUs/XNHGkcp2vnxlOgFu6qo4nJ8E+tBw/2gXrRLiK750RTrjg808sdPz29Jf3F/B1PjxLJkSY3QpwkkSI0JYmhnHW0dqsHnpDIzP7y5jQojZrV0Vh/P5QJfh/o6LCA3k/ivS2HSynuJ6zz1Lzy9v5VhVO/cuce3c0sL9bpmfTE17L/u9cAbGqtYeNp2s485FqYQFmw2pwecD/VB5K1ab5sopEuiOeHDZ0Fn6f20+bXQpl/SHD0qJCg007CxIuM6anATCQ8y8nl9ldCkj9sLeckxKcd8V7u2qOJzPB/rekhaCzCbmpUYZXYpXiAwN4p+vmsK2ogbyyz1vebCSxnNsK2rg3iVphAYZcxYkXCckMICb5kxi44l6Wr1oaufOvkFeO1TF9bOSSIow7iK9Q4GulLpOKXVKKVWilPrBRR7/jlKqUCl1XCm1XSll3J+oC+wrbWH+5ChCAmW4v6O+dGUaceHB/Or9Yo+b4+WZD0sJCTS5fcCGcJ+7F6cyYLXxhhedpb+8v5KufgsPLs0wtI7LBrpSKgB4ElgL5AB3KKVyLtjsYyBPaz0LeBN4zNmFjkZ7zwCFdZ1y4WyEQoPMfHNVJofK29jpQfNrNHT28fbHNdyWl0LM+GCjyxEuMi0xnIVp0bxysNIrLo72DVp5bncpyzJjmZkcYWgtjpyhLwRKtNalWusB4FXgxuEbaK13aq177N/uBzyicXN/aStawxUS6CP2xQUppMWE8tj7pzxmzcff7zqLTQ9N+yt8212LJ1PR0sNuL5gn/bVDVTR3DfD1FVONLsWhQJ8EDP/sU22/71IeADZd7AGl1ENKqXylVH5Tk+tn99t3tplxgQHMSo50+b58TWCAie9dm01x/TleO2T8R9+a9l5eOVDJbXnJpESHGl2OcLHrZiQSExbk8StqDVhsPP3BWfJSo1iUHm10Oc69KKqUuhvIA359sce11s9orfO01nlxca4ftbmvtIUF6dEEmX3+2q9LrJuZyOKMaH69uZj2HmMvUD1hH8H68MpMQ+sQ7hFsDuC2BSlsK2qgtr3X6HIu6W9Ha6jt6OPrK6Z6RBdaR5KuBhi+UGOy/b5PUUqtBn4MrNda9zunvNFrOtfP6YYulmRIc8toKaV4dH0unX0WfrPFuG6MlS09vJFfxR0LU5gkw/z9xl32OXr+tK/c2EIuwWrT/GHXWXKSJnjMovOOBPohIFMpla6UCgJuBzYM30ApNRd4mqEw94iraOcHJkj7+dhkJ07gnsWpvHyggoLaDkNq+NX7xZgDlEe0UQr3SY4KZd3MJF7ZX8k5D5xW991jtZQ2d3vM2Tk4EOhaawvwMLAZKAJe11oXKKV+ppRab9/s18B44A2l1FGl1IZLvJzb7D3bQniwmdyJ7p2+0hd9+5osokKD+NHbJ7FY3bs6+76zLbx3oo6vXjWV+AmyIpG/eWh5Buf6Lbx60PjrOMMNWm08vu0005MmsHZGotHlfMKhxmWt9UatdZbWeorW+pf2+36qtd5gv71aa52gtZ5j/1r/+a/oevtLW1iUEY1Z5skes4hxgfz7+lyOVbXz3O4yt+3XYrXxH+8WMClyHA8tl54t/mhWciSL0qN5fk8Zg24+mfg8b+RXU9HSwyNrsty2XqgjfDLt6jp6KWvuZokM93eaG2YlcW1uAr/ZepqSxnNu2eef91dQXH+OH62bzrggGRjmr/7pqgzqOvp491it0aUAQ/3Of7v9DPMmR7LSw1bK8slA33d2qP1cLog6j1KKX9w0k9CgAL77xnGXny1Vtfbw2OZTLMuMZd1Mz/lIK9zv6qx4shLG88TOEo8YE/Hn/RXUd/bxvWuzPabt/DyfDPS9Z1uICg0kOzHc6FJ8Slx4ML+8aSbHqtp57P1il+1Ha833/3ock1L8582zPO6XRriXyaT41uosSpu62XDsMx3s3Kq9Z4AndpawLDPWI0eg+1yga63Zd7aFxRkxHtW25Suun5XEvUtSefajMjYX1LtkH8/tLmPv2RZ+tG66dFMUAFyXm8j0pAn877Yzbr8wP9z/bDtDZ+8gP75+umE1fB6fC/Sq1l5q2nulu6IL/fj66cxOjuCRN45xpsG57en55a3856Zirs1N4I6FKZd/gvALJpPi26szKW/p4a2PjTlLP91wjpf2V3DnoslkJ3pm7zmfC/R9pUNzP3jixyFfEWwO4Mm75hESGMB9zx+krsM5I/lq2nv5+itHmBQ1jl/fOluaWsSnXJOTwKzkCB7fepreAatb96215ud/LyQsKIDvXDPNrfseCZ8L9ANlrcSEBTElbrzRpfi05KhQXvjSAjr7LNz//CGau8Y2OLi9Z4D7nj9Iz4CVp++Zz4SQQCdVKnyFUoqfXJ9DXUcff/jgrFv3/ffjdXx0pplvrc7y6KUsfS7QD5a1sjA9Ws7u3CB3YgRP3zOfitZubnt6HzWjnHOjuaufu587QGVLD8/em+exH2eF8RamR3P9rCSe/vCs2+Z4aese4NENBcxOjvD4efh9KtBr2nupbutloQfMeuYvrpway0sPLKKps59/fGoPB8tGtsrRmYZz3PaHfZxp6OLpe+azWLqaisv44dpstIZfvFfolv39/O+FdPQO8p83z/L4gYqeXd0IHbKHiQS6ey1Ii+b1f17CuMAA7nh2P4+9X0x3v+Vzn2Ox2nhpXznrn9hDR+8gf35wESs8bJCG8EzJUaF8Y1UmG0/Us/FEnUv3taWgnrc+ruGrV09hepLnf3L0qUUZD5S1Eh5ilo/sBpieNIF3/2Upj24o5KldZ3k9v5o7F03mhllJTI0f/0kTWF1HL9sKG/jTvgpKGru4cmoMj982R+ZpESPyT8szeP9kPf/2t5MszohxSbt2bXsv33vzODMmTeDhld4xMZwyas3IvLw8nZ+f79TXXPWbXaTGhPH8/Quc+rpiZA5XtPG7HWf44HQTWkNoUABRoUF0D1ho7xmaNS934gS+vmIqa2ckyvUOMSrF9Z3c8LvdrMyO5w93z3fq+8hitXHHs/sprO3kvW8sIy02zGmvPVZKqcNa67yLPeYzZ+jNXf2cberm1jzpu2y0+alRvPClhdS097KnpJmiuk46egYJCzaTFhvGkowYpieFS5CLMclOnMD3r8vmF+8V8exHpTy0fIpTXldrzb9vKOBQeRv/e/scjwrzy/GZQJf2c88zKXIct8kfWOFCDyxN50hlG796/xS5EyO4curYJ+R7fk85Lx+o5J+vmsKNcz5vtU3P4zMXRQ+UtTIuMIAZE41ddVsI4T5KKR67ZTZT4sJ46MV8jle3j+n1XjtUyc//Xsh1uYn867WeO4DoUnwm0A+WtTIvNVLWDxXCz4wPNvPilxcRFRbEfc8f5FhV+6he56V95Xz/rye4KiuO/7l9jlfOBeUT6dfRO0hRfScL06QPsxD+KDEihJcfXERYsJnbn9nPphF0Z+y3WPnpOyf5t3cKWJUdz9P3zCck0Dvn3/eJQD9c0YrW0n4uhD9LjQnj7a9dSVZiOF99+QiPvHGMpnOfPyXF/tIWrv/tbl7cV8FXlqXzzL15Xhvm4CMXRQ+UtRIYoJg7OdLoUoQQBooLD+aNf1rCb7ef4fcfnOW943XcOGci1+QkMC0xnJDAABo7+zlc2cY7H9eQX9HGxIgQ/vilBayY5v0D23wi0A+WtTI7OdKr/7IKIZwjyGzikWuncfP8ZJ7YUcKGY7W8euizi0ynx4bx03/I4Y6Fk31miUOvD/SeAQsnqjtkEWEhxKekx4bxm9tm84ubZnC8up3S5m4GrTaiw4LITpzAlLgwnxsL4fWB/nFlOxablvZzIcRFjQsKYFFGDIv8YOI3r78oeqCsFZMaGp0ohBD+zOsD/WBZC7kTIwiXBRGEEH7OqwO932Ll48p2aW4RQgi8PNBPVHfQb7FJoAshBF4e6AfOT8iVJoEuhBBeHegHy1qZlhBOlAcv2iqEEO7itYFusdo4XNEmzS1CCGHntYFeVHeOrn6LBLoQQth5baAfKGsBZEIuIYQ4z2sD/WBZK2kxoSTI4sJCCAF4aaDbbJpD5a1ydi6EEMN4ZaCXNHXR1jPIwnTfn5tBCCEc5ZWBfr7/+SI5QxdCiE94ZaAfLGslKSKE5KhxRpcihBAew6FAV0pdp5Q6pZQqUUr94CKPByulXrM/fkApleb0Su201hwsa2FherTPzWUshBBjcdlAV0oFAE8Ca4Ec4A6lVM4Fmz0AtGmtpwKPA79ydqHnVbb20NDZLxdEhRDiAo6coS8ESrTWpVrrAeBV4MYLtrkR+JP99pvAKuWi02dpPxdCiItzJNAnAcMX5Ku233fRbbTWFqAD+EwXFKXUQ0qpfKVUflNT06gKjhwXyJqcBKbEjR/V84UQwle5dQk6rfUzwDMAeXl5ejSvsSY3kTW5iU6tSwghfIEjZ+g1QMqw75Pt9110G6WUGYgAWpxRoBBCCMc4EuiHgEylVLpSKgi4HdhwwTYbgPvst28BdmitR3UGLoQQYnQu2+SitbYopR4GNgMBwPNa6wKl1M+AfK31BuA54CWlVAnQylDoCyGEcCOH2tC11huBjRfc99Nht/uAW51bmhBCiJHwypGiQgghPksCXQghfIQEuhBC+AgJdCGE8BHKqN6FSqkmoGKUT48Fmp1YjjeQY/YPcsz+YSzHnKq1jrvYA4YF+lgopfK11nlG1+FOcsz+QY7ZP7jqmKXJRQghfIQEuhBC+AhvDfRnjC7AAHLM/kGO2T+45Ji9sg1dCCHEZ3nrGboQQogLSKALIYSP8LhAH8uC1EqpH9rvP6WUutathY/BaI9ZKXWNUuqwUuqE/d+Vbi9+lMa68LhSarJSqksp9Yjbih6DMb6vZyml9imlCuw/6xC3Fj9KY3hfByql/mQ/1iKl1A/dXvwoOXDMy5VSR5RSFqXULRc8dp9S6oz9674Ln+sQrbXHfDE0Pe9ZIAMIAo4BORds8zXgD/bbtwOv2W/n2LcPBtLtrxNg9DG5+JjnAhPtt2cANUYfj6uPedjjbwJvAI8YfTwu/hmbgePAbPv3MX7wvr4TeNV+OxQoB9KMPiYnHXMaMAt4Ebhl2P3RQKn93yj77aiR1uBpZ+hjWZD6RobeBP1a6zKgxP56nm7Ux6y1/lhrXWu/vwAYp5QKdkvVYzOmhceVUjcBZQwdszcYy/GuAY5rrY8BaK1btNZWN9U9FmM5Zg2E2Vc/GwcMAJ3uKXtMLnvMWutyrfVxwHbBc68FtmqtW7XWbcBW4LqRFuBpgT6WBakdea4nctYi3DcDR7TW/S6q05lGfcxKqfHA94H/cEOdzjKWn3EWoJVSm+0f1f/VDfU6w1iO+U2gG6gDKoH/0lq3urpgJxhLBjklv9y6SLRwDaVULvArhs7mfN2jwONa6y77CbuvMwNLgQVAD7BdKXVYa73d2LJcaiFgBSYy1PzwkVJqm9a61NiyPJ+nnaGPZUFqR57rica0CLdSKhl4G7hXa33W5dU6x1iOeRHwmFKqHPgW8CP7EomebCzHWw18qLVu1lr3MLRy2DyXVzx2YznmO4H3tdaDWutGYA/gDXO9jCWDnJNfRl9IuOCCgZmhiwHp/P+LCrkXbPN1Pn0h5XX77Vw+fVG0FO+4eDSWY460b/+PRh+Hu475gm0exTsuio7lZxwFHGHo4qAZ2AZcb/QxufiYvw/80X47DCgEZhl9TM445mHbvsBnL4qW2X/eUfbb0SOuwej/hIsc6DrgNENXi39sv+9nwHr77RCGejeUAAeBjGHP/bH9eaeAtUYfi6uPGfgJQ22NR4d9xRt9PK7+OQ97Da8I9LEeL3A3QxeATwKPGX0srj5mYLz9/gJ7mH/P6GNx4jEvYOhTVzdDn0YKhj33y/b/ixLgS6PZvwz9F0IIH+FpbehCCCFGSQJdCCF8hAS6EEL4CAl0IYTwERLoQgjhIyTQhRDCR0igCyGEj/h/A1HZxWfOwh0AAAAASUVORK5CYII=", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] @@ -191,7 +191,7 @@ ], "source": [ "\n", - "y = np.sin(100 * 2.0*np.pi*x+1.5*np.sin(30 * 2.0*np.pi*x))+np.sin(10* 2.0*np.pi*x)\n", + "y = (np.sin(20 * 2.0*np.pi*x)+np.sin(5* 2.0*np.pi*x)+np.sin(2* 2.0*np.pi*x))/3\n", "plt.plot(x, y, '-')\n", "plt.show()" ] |