diff options
author | Alain <mceagle117@gmail.com> | 2022-08-17 08:21:27 +0200 |
---|---|---|
committer | Alain <mceagle117@gmail.com> | 2022-08-17 08:21:27 +0200 |
commit | 1e358f56c6ad619ff5a2259ff9043af1ee8f274f (patch) | |
tree | 85e4bab8a08cd4f74788f18077ece5333e959a14 /buch | |
parent | lösungssachen (diff) | |
download | SeminarSpezielleFunktionen-1e358f56c6ad619ff5a2259ff9043af1ee8f274f.tar.gz SeminarSpezielleFunktionen-1e358f56c6ad619ff5a2259ff9043af1ee8f274f.zip |
änderungen
Diffstat (limited to '')
-rw-r--r-- | buch/papers/parzyl/teil0.tex | 18 | ||||
-rw-r--r-- | buch/papers/parzyl/teil1.tex | 21 |
2 files changed, 21 insertions, 18 deletions
diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index 3b14287..2844a6e 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -238,26 +238,12 @@ und + \mu \right ) - i(\tau) + i(z) = 0 \end{equation} führt. -Die Lösung von \eqref{parzyl:sep_dgl_3} -\begin{equation} - i(z) - = - A\cos{ - \left ( - \sqrt{\lambda + \mu}z - \right )} - + - B\sin{ - \left ( - \sqrt{\lambda + \mu}z - \right )} -\end{equation} -ist und \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} die sogenannten Weberschen Differentialgleichungen sind, welche die parabolischen Zylinder Funktionen als Lösung haben. + diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index edc6db0..154ee71 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -6,6 +6,22 @@ \section{Lösung \label{parzyl:section:teil1}} \rhead{Lösung} + +\eqref{parzyl:sep_dgl_3} beschriebt einen ungedämpften harmonischen Oszillator. +Die Lösung ist somit +\begin{equation} + i(z) + = + A\cos{ + \left ( + \sqrt{\lambda + \mu}z + \right )} + + + B\sin{ + \left ( + \sqrt{\lambda + \mu}z + \right )}. +\end{equation} Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} können mit Hilfe der Whittaker Gleichung gelöst werden. \begin{definition} @@ -78,7 +94,7 @@ Whittaker und Watson zeigen in \cite{parzyl:whittaker} eine Lösung } M_{\frac{1}{2} n + \frac{1}{4}, \frac{1}{4}} \left(\frac{1}{2}z^2\right) \end{equation} -welche die Differenzialgleichung +welche die Differentialgleichung \begin{equation} \frac{d^2D_n(z)}{dz^2} + \left(n + \frac{1}{2} - \frac{1}{4} z^2\right)D_n(z) = 0 \end{equation} @@ -105,7 +121,7 @@ mit {\textstyle \frac{1}{2}}a}\right)} {2^{\frac{1}{2} a - \frac{1}{4}}} w_2 \end{align} -der Differenzialgleichung +der Differentialgleichung \begin{equation} \frac{d^2 y}{d z^2} - \left(\frac{1}{4} z^2 + a\right) y = 0 \end{equation} @@ -138,3 +154,4 @@ ausgedrückt werden V(a,z) &= \frac{\Gamma \left({\textstyle \frac{1}{2}} + a\right)}{\pi} \left[\sin\left(\pi a\right) D_{-a-1/2}(z) + D_{-a-1/2}(-x)\right]. \end{align} +TODO Plot
\ No newline at end of file |