diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-12-18 17:17:17 +0100 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2021-12-18 17:17:17 +0100 |
commit | 205b65bcb0891d941b60f295876b40121cfe871e (patch) | |
tree | ad462ab90fef64c56d860250e16961828e7cbaf4 /buch | |
parent | Eigenwertproblem auf dem Rechteck (diff) | |
download | SeminarSpezielleFunktionen-205b65bcb0891d941b60f295876b40121cfe871e.tar.gz SeminarSpezielleFunktionen-205b65bcb0891d941b60f295876b40121cfe871e.zip |
more info about gamma function
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/040-rekursion/Makefile.inc | 2 | ||||
-rw-r--r-- | buch/chapters/040-rekursion/chapter.tex | 1 | ||||
-rw-r--r-- | buch/chapters/040-rekursion/gamma.tex | 256 | ||||
-rw-r--r-- | buch/chapters/040-rekursion/uebungsaufgaben/2.tex | 52 | ||||
-rw-r--r-- | buch/chapters/040-rekursion/uebungsaufgaben/3.tex | 11 | ||||
-rw-r--r-- | buch/chapters/080-funktionentheorie/Makefile.inc | 4 | ||||
-rw-r--r-- | buch/chapters/080-funktionentheorie/anwendungen.tex | 9 | ||||
-rw-r--r-- | buch/chapters/080-funktionentheorie/chapter.tex | 14 | ||||
-rw-r--r-- | buch/chapters/080-funktionentheorie/gammareflektion.tex | 223 | ||||
-rw-r--r-- | buch/chapters/080-funktionentheorie/images/Makefile | 5 | ||||
-rw-r--r-- | buch/chapters/080-funktionentheorie/images/gammapfad.pdf | bin | 0 -> 14664 bytes | |||
-rw-r--r-- | buch/chapters/080-funktionentheorie/images/gammapfad.tex | 54 | ||||
-rw-r--r-- | buch/chapters/080-funktionentheorie/uebungsaufgaben/1.tex | 55 | ||||
-rw-r--r-- | buch/chapters/080-funktionentheorie/uebungsaufgaben/2.tex | 31 | ||||
-rw-r--r-- | buch/common/packages.tex | 1 |
15 files changed, 706 insertions, 12 deletions
diff --git a/buch/chapters/040-rekursion/Makefile.inc b/buch/chapters/040-rekursion/Makefile.inc index 0da5fe4..714e10e 100644 --- a/buch/chapters/040-rekursion/Makefile.inc +++ b/buch/chapters/040-rekursion/Makefile.inc @@ -8,4 +8,6 @@ CHAPTERFILES = $(CHAPTERFILES) \ chapters/040-rekursion/gamma.tex \ chapters/040-rekursion/linear.tex \ chapters/040-rekursion/hypergeometrisch.tex \ + chapters/040-rekursion/uebungsaufgaben/1.tex \ + chapters/040-rekursion/uebungsaufgaben/2.tex \ chapters/040-rekursion/chapter.tex diff --git a/buch/chapters/040-rekursion/chapter.tex b/buch/chapters/040-rekursion/chapter.tex index d648cbb..3467a71 100644 --- a/buch/chapters/040-rekursion/chapter.tex +++ b/buch/chapters/040-rekursion/chapter.tex @@ -19,5 +19,6 @@ \begin{uebungsaufgaben} %\uebungsaufgabe{0} \uebungsaufgabe{1} +\uebungsaufgabe{2} \end{uebungsaufgaben} diff --git a/buch/chapters/040-rekursion/gamma.tex b/buch/chapters/040-rekursion/gamma.tex index 36937c7..9bbbd13 100644 --- a/buch/chapters/040-rekursion/gamma.tex +++ b/buch/chapters/040-rekursion/gamma.tex @@ -575,16 +575,12 @@ Die Genauigkeit erreicht sechs korrekte Nachkommastellen mit nur 337 Auswertungen des Integranden. % -% Spiegelformel -% -\subsection{Die Spiegelungsformel} - -% % Beta-Integrale % \subsection{Die Beta-Funktion} \begin{definition} +\label{buch:rekursion:gamma:def:beta-funktion} Das Beta-Integral ist das Integral \[ B(x,y) @@ -745,10 +741,260 @@ s^{x-1} Die Beta-Funktion kann aus der Gamma-Funktion nach \begin{equation} B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} +\label{buch:rekursion:gamma:betagamma} \end{equation} berechnet werden. \end{satz} +\subsubsection{Der Wert von $\Gamma(\frac12)$?} +Als Anwendung der Formel~\eqref{buch:rekursion:gamma:betagamma} +untersuchen wir den Fall $y=1-x$. +In diesem Fall wird der Nenner zu $\Gamma(x+1-x)=\Gamma(1)=1$ und damit +\begin{equation} +\Gamma(x)\Gamma(1-x) += +B(x,1-x) += +\int_0^1 t^{x-1}(1-t)^{-x}\,dt. +\label{buch:rekursion:gamma:spiegelung-betaintegral} +\end{equation} +Sofern man in der Lage ist, das Integral auf der rechten Seite von +\eqref{buch:rekursion:gamma:spiegelung-betaintegral} auszuwerten, +kann man eine einfache Beziehung zwischen zwei Werten der Gamma-Funktion +an Stellen, die durch eine Spiegelung an der Geraden +$\operatorname{Re}x=\frac12$ auseinander hervorgehen. +Für $x=\frac12$ wird der Ausdruck besonders einfach: +\[ +\Gamma({\textstyle\frac12})^2 += +\int_0^1 t^{\frac12}(1-t)^{-\frac12}\,dt += +\int_0^1 \sqrt{\frac{t}{1-t}}\,dt. +\] +Mit der Substition $t=\sin^2 s$ wird daraus +\[ +\int_0^{\frac{\pi}2} +\sqrt{\frac{\sin^2s}{1-\sin^2s}} +2\sin s\cos s +\,ds += +2 +\int_0^{\frac{\pi}2} +\sin^2 s\,ds += +2 +\int_0^{\frac{\pi}2} +\frac{1-\cos 2s}{2}\,ds += +\frac{\pi}2-\int_0^{\frac{\pi}2}\cos 2s\,ds, +\] +wobei wir $dt = 2\sin s\cos s\,ds$ verwendet haben. +Da $\cos 2s$ eine im Intervall $[0,\frac{\pi}2]$ bezüglich +des Punktes $\frac{\pi}4$ ungerade Funktion ist, verschwindet +das zweite Integral. +Somit folgt +\begin{equation} +\Gamma({\textstyle\frac12})^2 = \frac{\pi}{2} +\qquad\Rightarrow\qquad +\Gamma({\textstyle\frac12}) = \sqrt{\frac{\pi}{2}}. +\label{buch:rekursion:gamma:gamma12} +\end{equation} +Matt Parker hat auf seinem Youtube-Kanal {\em Stand-up Maths} dieses Resultat +sogar zum Titel eines Videos\footnote{\url{https://youtu.be/dGnIJFzkLI4}} +gemacht: +{\em What is the factorial of $-\nicefrac{1}{2}$?} +Die Antwort ist natürlich nur möglich, indem man +$(-\frac12)!$ als Wert +\[ +(-{\textstyle\frac12})! += +\Gamma(-{\textstyle\frac12}+1) += +\Gamma({\textstyle\frac12}) += +\sqrt{\frac{\pi}2} +\] +der Gamma-Funktion interpretiert. + +\subsubsection{Alternative Parametrisierungen} +Die Substitution $t=\sin^2 s$ hat im vorangegangenen Abschnitt +ermöglicht, $\Gamma(\frac12)$ zu ermitteln. +Die Substition erlaubt aber auch, das Beta-Integral in eine alternative +Form zu bringen. +Aus der Definition~\ref{buch:rekursion:gamma:def:beta-funktion} +wird damit +\begin{align*} +B(x,y) +&= +\int_0^1 t^{x-1} (1-t)^{y-1}\,dt +\\ +&= +2 +\int_0^{\frac{\pi}2} \sin^{2(x-1)} s\cdot (1-\sin^2 s)^{y-1} +\cdot \sin s\cos s\,ds +\\ +&= +2 +\int_0^{\frac{\pi}2} \sin^{2x-1}s \cos^{2y-1} s\,ds. +\intertext{Unter Verwendung der Formel~\eqref{buch:rekursion:gamma:betagamma}, +die die Beta-Funktion durch Gamma-Funktionen auszudrücken erlaubt, findet +man die Formel} +\int_0^{\frac{\pi}2} \sin^{2x-1}s \cos^{2y-1} s\,ds +&= +\frac{\Gamma(x)\Gamma(y)}{2\Gamma(x+y)} +\end{align*} +für ein bestimmtes Integral von Potenzen von Sinus- und Kosinus-Funktionen. + +Die alternative Substitution $t = s/(s+1)$ verwandelt das Beta-Integral +$B(x,y)$ in ein Integral über die positive Halbachse ab: +\begin{align} +B(x,y) +&= +\int_0^1 t^{x-1}(1-t)^{y-1}\,dt +\notag +\\ +&= +\int_0^\infty +\frac{s^{x-1}}{(s+1)^{x-1}} +\frac{1}{(s+1)^{y-1}} +\frac{ds}{(s+1)^2} +\notag +\\ +&= +\int_0^\infty +\frac{s^{x-1}}{(s+1)^{x+y}}\,ds, +\label{buch:rekursion:gamma:beta:sinf} +\end{align} +wobei wir +\[ +\frac{dt}{ds} += +\frac{d}{ds} +\frac{s}{s+1} += +\frac{(s+1)-s}{(s+1)^2} += +\frac{1}{(s+1)^2} +\] +verwendet haben. +Diese Darstellung des Beta-Integrals wird später +% XXX Ort ergänzen +dazu verwendet, die Spiegelungsformel für die Gamma-Funktion +herzuleiten. + +Eine weitere mögliche Parametrisierung verwendet $t = (1+s)/2$ +mit $dt=\frac12 ds$. +Damit wird das Beta-Integral +\begin{equation} +B(x,y) += +\int_0^1 t^{x-1}(1-t)^{y-1}\,dt += +\frac12 +\int_{-1}^1 +\biggl(\frac{1+s}2\biggr)^{x-1} +\biggl(\frac{1-s}2\biggr)^{y-1} +\,ds += +2^{1-x-y} +\int_{-1}^1 +(1+s)^{x-1}(1-s)^{y-1} +\,ds. +\label{buch:rekursion:gamma:beta:symm} +\end{equation} + +\subsubsection{Die Verdoppelungsformel von Legendre} +Die trigonometrische Substitution kann dazu verwendet werden, die +Legendresche Verdoppelungsformel für die Gamma-Funktion herzuleiten. + +\begin{satz}[Legendre] +\[ +\Gamma(x)\Gamma(x+{\textstyle\frac12}) += +2^{1-2x}\sqrt{\pi} +\Gamma(2x) +\] +\end{satz} + +\begin{proof}[Beweis] +Der Wert $\Gamma(2x)$ entsteht, wenn man $B(x,x)$ mit Hilfe der +Gamma-Funktion als +\[ +B(x,x) += +\frac{\Gamma(x)^2}{\Gamma(2x)} +\] +schreibt. +Das Ziel ist, $B(x,x)$ auf einem alternativen Weg zu berechnen. + +Mit Hilfe von \eqref{buch:rekursion:gamma:beta:symm} +kann man das Beta-Integral zu +\begin{align*} +B(x,x) +&= +2^{1-2x} +\int_{-1}^1 +(1+s)^{x-1}(1-s)^{x-1} +\,ds += +2^{1-2x} +\int_{-1}^1(1-s^2)^{x-1}\,ds +\end{align*} +vereinfachen. +Der Integrand ist gerade, es folgt +\[ +B(x,x) += +2^{1-2x} +\cdot 2 +\int_0^1(1-s^2)^{x-1}\,ds. +\] +Das Integral kann mit der Substitution $s^2=t$ wieder in die Form +eines Beta-Integrals gebracht werden: +\begin{align*} +2\int_0^1(1-s^2)^{x-1}\,ds +&= +\int_0^1 (1-t)^{x-1} \,\frac{dt}{\sqrt{t}} += +\int_0^1 t^{\frac12-1}(1-t)^{x-1}\,dt += +B({\textstyle\frac12},x). +\end{align*} +In der Substitution haben wir $2s\,ds = dt$ oder $2\,ds = dt/\sqrt{t}$ +verwendet. +Das letzte Beta-Integral kann man nun wieder mit Gamma-Funktionen +schreiben, nämlich als +\[ +B({\textstyle\frac12},x) += +\frac{\Gamma({\textstyle\frac12})\Gamma(x)}{\Gamma(x+{\textstyle\frac12})}. +\] +Setzt man alles zusammen, erhält man jetzt +\begin{align*} +\frac{\Gamma(x)^2}{\Gamma(2x)} +&= +\frac1{2^{2x-1}} +\frac{\Gamma({\textstyle\frac12})\Gamma(x)}{\Gamma(x+{\textstyle\frac12})} +\\ +\Rightarrow\qquad +\Gamma(x)\Gamma(x+{\textstyle\frac12}) +&= +2^{1-2x} +\Gamma({\textstyle\frac12})\Gamma(2x) += +2^{1-2x}\sqrt{\pi}\Gamma(2x), +\end{align*} +wobei wir den bekannten Wert $\Gamma(\frac12)=\sqrt{\pi}$ verwendet haben. +\end{proof} + +Setzt man $x=\frac12$ in die Verdoppelungsformel ein, erhält man +\[ +\Gamma({\textstyle\frac12})\Gamma(1) = 2^{1-2\frac12}\sqrt{\pi}\Gamma(1) +\qquad\Rightarrow\qquad +\Gamma({\textstyle\frac12}) = \sqrt{\pi}, +\] +in Übereinstimmung mit dem bereits bekannten Wert. + \subsubsection{Beta-Funktion und Binomialkoeffizienten} Die Binomialkoeffizienten können mit Hilfe der Fakultät als \begin{equation} diff --git a/buch/chapters/040-rekursion/uebungsaufgaben/2.tex b/buch/chapters/040-rekursion/uebungsaufgaben/2.tex new file mode 100644 index 0000000..b70626c --- /dev/null +++ b/buch/chapters/040-rekursion/uebungsaufgaben/2.tex @@ -0,0 +1,52 @@ +Berechnen Sie +\begin{teilaufgaben} +\item $\Gamma(\frac{5}2)$ +\item $\displaystyle \frac{\Gamma(\frac{16}3)}{\Gamma(\frac{10}3)}$ +\end{teilaufgaben} + +\begin{loesung} +\begin{teilaufgaben} +\item +Mit Hilfe der Funktionalgleichung findet man +\[ +\Gamma({\textstyle\frac52}) += +\frac32 +\cdot +\Gamma({\textstyle\frac32}) += +\frac32 +\cdot +\frac12 +\cdot +\Gamma({\textstyle\frac12}) += +\frac{3}{4}\sqrt{\pi}. +\] +\item +Ebenfalls unter Verwendung der Funktionalgleichung der Gamma-Funktion +findet man +\[ +\Gamma({\textstyle\frac{16}3}) += +\frac{13}3 +\cdot +\Gamma({\textstyle\frac{13}3}) += +\frac{13}3 +\cdot +\frac{10}3 +\cdot +\Gamma({\textstyle\frac{10}3}) +\quad\Rightarrow\quad +\frac{\Gamma(\frac{16}3)}{\Gamma(\frac{10}3)} += +\frac{13}3\cdot\frac{10}3 += +\frac{130}{9} +\approx +14.4444. +\qedhere +\] +\end{teilaufgaben} +\end{loesung} diff --git a/buch/chapters/040-rekursion/uebungsaufgaben/3.tex b/buch/chapters/040-rekursion/uebungsaufgaben/3.tex new file mode 100644 index 0000000..a747ecb --- /dev/null +++ b/buch/chapters/040-rekursion/uebungsaufgaben/3.tex @@ -0,0 +1,11 @@ +Finden Sie eine Formel für $\Gamma(\frac12+n)$ für $n\in\mathbb{N}$. + +\begin{loesung} +Die Funktionalgleichung für die Gamma-Funktion bedeutet +\[ +\Gamma({\textstyle\frac12}+n) += +({\textstyle\frac12}+n-1) +\Gamma({\textstyle\frac12}+n-1) +\] +\end{loesung} diff --git a/buch/chapters/080-funktionentheorie/Makefile.inc b/buch/chapters/080-funktionentheorie/Makefile.inc index 891f488..a702182 100644 --- a/buch/chapters/080-funktionentheorie/Makefile.inc +++ b/buch/chapters/080-funktionentheorie/Makefile.inc @@ -9,4 +9,8 @@ CHAPTERFILES = $(CHAPTERFILES) \ chapters/080-funktionentheorie/analytisch.tex \ chapters/080-funktionentheorie/cauchy.tex \ chapters/080-funktionentheorie/fortsetzung.tex \ + chapters/080-funktionentheorie/anwendungen.tex \ + chapters/080-funktionentheorie/gammareflektion.tex \ + chapters/080-funktionentheorie/uebungsaufgaben/1.tex \ + chapters/080-funktionentheorie/uebungsaufgaben/2.tex \ chapters/080-funktionentheorie/chapter.tex diff --git a/buch/chapters/080-funktionentheorie/anwendungen.tex b/buch/chapters/080-funktionentheorie/anwendungen.tex new file mode 100644 index 0000000..aab0d6b --- /dev/null +++ b/buch/chapters/080-funktionentheorie/anwendungen.tex @@ -0,0 +1,9 @@ +% +% anwendungen.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\section{Anwendungen +\label{buch:funktionentheorie:section:anwendungen}} + +\input{chapters/080-funktionentheorie/gammareflektion.tex} diff --git a/buch/chapters/080-funktionentheorie/chapter.tex b/buch/chapters/080-funktionentheorie/chapter.tex index 877d1b1..b7b5325 100644 --- a/buch/chapters/080-funktionentheorie/chapter.tex +++ b/buch/chapters/080-funktionentheorie/chapter.tex @@ -35,17 +35,19 @@ auf der rellen Achse hinaus fortsetzen. \input{chapters/080-funktionentheorie/analytisch.tex} \input{chapters/080-funktionentheorie/cauchy.tex} \input{chapters/080-funktionentheorie/fortsetzung.tex} +\input{chapters/080-funktionentheorie/anwendungen.tex} \section{TODO} \begin{itemize} \item Aurgument-Prinzip \end{itemize} -%\section*{Übungsaufgaben} -%\rhead{Übungsaufgaben} -%\aufgabetoplevel{chapters/020-exponential/uebungsaufgaben} -%\begin{uebungsaufgaben} +\section*{Übungsaufgaben} +\rhead{Übungsaufgaben} +\aufgabetoplevel{chapters/080-funktionentheorie/uebungsaufgaben} +\begin{uebungsaufgaben} %\uebungsaufgabe{0} -%\uebungsaufgabe{1} -%\end{uebungsaufgaben} +\uebungsaufgabe{1} +\uebungsaufgabe{2} +\end{uebungsaufgaben} diff --git a/buch/chapters/080-funktionentheorie/gammareflektion.tex b/buch/chapters/080-funktionentheorie/gammareflektion.tex new file mode 100644 index 0000000..e77c8d6 --- /dev/null +++ b/buch/chapters/080-funktionentheorie/gammareflektion.tex @@ -0,0 +1,223 @@ +% +% gammareflektion.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\subsection{Reflektionsformel für die Gamma-Funktion +\label{buch:funktionentheorie:subsection:gammareflektion}} +Die Formel~\eqref{buch:rekursion:gamma:spiegelung-betaintegral} +stellt eine Beziehung zwischen dem Produkt $\Gamma(x)\Gamma(1-x)$ +von zwei Werten der Gamma-Funktion in Punkten der komplexen Ebene, +die durch Spiegelung an der Geraden $\operatorname{Re}x=\frac12$ +auseinander hervorgehen, und einem speziellen Beta-Integral her. + +\begin{satz} +Für $0<x<1$ gilt +\begin{equation} +\Gamma(x)\Gamma(1-x) += +\frac{\pi}{\sin\pi x}. +\end{equation} +\end{satz} + +\begin{figure} +\centering +\includegraphics{chapters/080-funktionentheorie/images/gammapfad.pdf} +\caption{Pfad zur Auswertung des +Integrals~\eqref{buch:funktionentheorie:eqn:gammapfadintegral} +mit Hilfe des Residuensatzes. +\label{buch:funktionentheorie:fig:gammapfad}} +\end{figure} + +\begin{proof}[Beweis] +In der Formel~\eqref{buch:rekursion:gamma:spiegelung-betaintegral} +wurde bereits ein Zusammenhang zwischen $\Gamma(x)\Gamma(1-x)$ +und einem Beta-Integral hergestellt, konkret +\[ +\Gamma(x)\Gamma(1-x) += +B(x,1-x) += +\int_0^1 t^{x-1}(1-t)^{-x}\,dt. +\] +Mit der Substitution $t=s/(s+1)$, die bereits für die Herleitung der +Formel~\eqref{buch:rekursion:gamma:beta:sinf} verwendet wurde, ergibt sich +\[ +\Gamma(x)\Gamma(1-x) += +\int_0^\infty +\frac{s^{x-1}}{s+1} +\,ds. +\] +Um dieses Integral zu berechnen, verwenden wir den Cauchy-Integralsatz, +um das Integral +\begin{equation} +I += +\oint_\gamma \frac{z^{x-1}}{1-z}\,dz +\label{buch:funktionentheorie:eqn:gammapfadintegral} +\end{equation} +zu berechnen. +Darin hat die Funktion im Zähler des Integranden $f(z)=z^{x-1}$ +nur ausserhalb der negativen reellen Achse einen wohldefinierten Wert. +In Polarkoordinaten $z=re^{i\varphi}$ verwenden wir +den Hauptwert $z^{x-1}=r^{x-1}e^{i(x-1)\varphi}$. +Aus dem Cauchy-Integralsatz lesen wir den Wert +\[ +I = 2\pi i +\] +ab. + +Das Integral \eqref{buch:funktionentheorie:eqn:gammapfadintegral} +kann zerlegt werden in die Integrale +\begin{align*} +I +&= +I_R+I_++I_\varepsilon+I_-, +\end{align*} +wobei $I_R$ das Integral über den äusseren Kreis vom Radius $R$ ist, +$I_\varepsilon$ das Integral im Gegenuhrzeigersinn über den inneren Kreis +vom Radius $\varepsilon$. +Die Terme $I_{\pm}$ sind die Integrale entlang der negativen +reellen Achse, wobei das Pluszeichen für den oberen $-R$ nach +$-\varepsilon$ gelten soll. + +Für die beiden Integrale $I_R$ und $I_\varepsilon$ wird die Parametrisierung +$\varphi\mapsto z(\varphi) = re^{i\varphi}$ mit $dz=ire^{i\varphi}\,d\varphi$ +verwendet. +Das Integral über den Kreis vom Radius $r$ im Gegenuhrzeigersinn ist +\begin{align*} +I_r +&= +\int_{-\pi}^\pi +\frac{r^{x-1}e^{i(x-1)\varphi}}{1-re^{i\varphi}} ire^{i\varphi}\,d\varphi += +i\int_{-\pi}^\pi +\frac{r^xe^{ix\varphi}}{1-re^{i\varphi}} +\,d\varphi +\end{align*} +Die beiden Teile $I_R$ und $I_\varepsilon$ können wie folgt noch +weiter vereinfacht werden: +\begin{align*} +\\ +I_R +&= +iR^{x-1} +\int_{-\pi}^\pi +\frac{e^{ix\varphi}}{1/R-e^{i\varphi}} +\,d\varphi +\\ +I_{\varepsilon} +&= +- +i +\varepsilon^x +\int_{\pi}^{-\pi} +\frac{e^{ix\varphi}}{1-\varepsilon e^{i\varphi}} +\,d\varphi, +\end{align*} +wobei das negative Zeichen bei $I_\varepsilon$ daher rührt, dass der +kleine Kreis im Uhrzeigersinn durchlaufen wird. +Für grosse Werte von $R$ ist das erste Integral beschränkt, aber wegen +$x-1<0$ konvergiert der Vorfaktor $R^{x-1}$ gegen 0 für $R\to\infty$. +Ähnlich ist das zweite Integral für kleine $\varepsilon$ beschränkt, aber +$\varepsilon^x$ konvergiert gegen $0$ für $\varepsilon\to 0$. +Wir können daher +\begin{align*} +\lim_{R\to\infty} +I_R +&= +\lim_{R\to\infty} +R^{x-1} +\int_{-\pi}^\pi +\frac{e^{i(x-1)\varphi}}{1/R-e^{i\varphi}} +ie^{i\varphi} +\,d\varphi +=0 +\\ +\text{und} +\qquad +\lim_{\varepsilon\to 0} +I_\varepsilon +&= +- +\lim_{\varepsilon\to 0} +\int_{\pi}^{-\pi} +\frac{\varepsilon^{x-1}e^{i(x-1)\varphi}}{1-\varepsilon e^{i\varphi}} +i\varepsilon e^{i\varphi} +\,d\varphi += +0 +\end{align*} +folgern. + +Die anderen zwei Integrale verwenden die Parametrisierung +$z(s) = -s = se^{\pm i\pi}$ mit $dz = e^{\pm i\pi}\,ds$. +Damit werden sie +\begin{align*} +I_+ +&= +\int_{R}^{\varepsilon} +\frac{s^{x-1}e^{i(x-1)\pi}}{1-se^{i\pi}} +e^{i\pi} +\,ds += +\int_{\varepsilon}^R +\frac{s^{x-1}e^{ix\pi}}{1+s} +\,ds +\\ +I_- +&= +\int_{\varepsilon}^{R} +\frac{s^{x-1}e^{i(x-1)(-\pi)}}{1-se^{-i\pi}} +e^{-i\pi} +\,ds += +- +\int_{\varepsilon}^{R} +\frac{s^{x-1}e^{-ix\pi}}{1+s} +\,ds. +\intertext{Die beiden Integrale stimmen bis auf den von $t$ unabhängigen +Faktor $e^{\pm ix\pi}$ überein, sie können daher zusammegefasst werden zu} +I_++I_- +&= +(e^{ix\pi}-e^{-ix\pi}) +\int_{\varepsilon}^{R} +\frac{s^{x-1}}{1+s} +\,ds += +\frac{e^{ix\pi}-e^{-ix\pi}}{2i} +\cdot +2i \int_{\varepsilon}^{R} +\frac{s^{x-1}}{1+s} +\,ds +\\ +&= +2i +\sin(\pi x) +\int_{\varepsilon}^R +\frac{s^{x-1}}{1+s} +\,ds. +\end{align*} +Durch Grenzübergang $R\to\infty$ und $\varepsilon \to 0$ wird dies zu +\[ +I += +2i\sin(\pi x) \int_{0}^\infty \frac{s^{x-1}}{1+s}\,ds +\] +Zusammen mit dem früher bestimmten Wert $I=2\pi i$ folgt +\[ +2\pi i += +2i\sin(\pi x) +\int_{0}^\infty \frac{s^{x-1}}{1+s}\,ds +\qquad\Rightarrow\qquad +\frac{\pi}{\sin \pi x} += +\int_{0}^\infty \frac{s^{x-1}}1+s\,ds += +\Gamma(x)\Gamma(1-x). +\] +Damit ist der Satz bewiesen. +\end{proof} + diff --git a/buch/chapters/080-funktionentheorie/images/Makefile b/buch/chapters/080-funktionentheorie/images/Makefile index 66e6d0f..1ddd585 100644 --- a/buch/chapters/080-funktionentheorie/images/Makefile +++ b/buch/chapters/080-funktionentheorie/images/Makefile @@ -4,7 +4,7 @@ # (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # all: nonanalytic.pdf integralanalytisch.pdf laurent.pdf \ - fortsetzreziprok.pdf forts.pdf logforts.pdf + fortsetzreziprok.pdf forts.pdf logforts.pdf gammapfad.pdf nonanalytic.pdf: nonanalytic.tex pdflatex nonanalytic.tex @@ -24,3 +24,6 @@ forts.pdf: forts.tex logforts.pdf: logforts.tex pdflatex logforts.tex +gammapfad.pdf: gammapfad.tex + pdflatex gammapfad.tex + diff --git a/buch/chapters/080-funktionentheorie/images/gammapfad.pdf b/buch/chapters/080-funktionentheorie/images/gammapfad.pdf Binary files differnew file mode 100644 index 0000000..13a6fc1 --- /dev/null +++ b/buch/chapters/080-funktionentheorie/images/gammapfad.pdf diff --git a/buch/chapters/080-funktionentheorie/images/gammapfad.tex b/buch/chapters/080-funktionentheorie/images/gammapfad.tex new file mode 100644 index 0000000..cf24c95 --- /dev/null +++ b/buch/chapters/080-funktionentheorie/images/gammapfad.tex @@ -0,0 +1,54 @@ +% +% gammapfad.tex -- Pfad zum Beweis der Reflektionsformel der Gamma-Funktion +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{2} +\definecolor{darkred}{rgb}{0.8,0,0} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\draw[->] (-2.55,0) -- (2.7,0) coordinate[label={$\operatorname{Re}z$}]; +\draw[->] (0,-2.55) -- (0,2.7,0) coordinate[label={right:$\operatorname{Im}z$}]; + +\def\repsilon{0.3} +\def\R{2.5} +\def\d{0.04} + +\pgfmathparse{asin(\d/sqrt(\R*\R-\d*\d))} +\xdef\A{\pgfmathresult} +\pgfmathparse{asin(\d/sqrt(\repsilon*\repsilon-\d*\d))} +\xdef\a{\pgfmathresult} + +\draw[->] (0,0) -- (70:\R); +\node at (70:{0.7*\R}) [right] {$R$}; +\draw[->] (0,0) -- (-40:\repsilon); +\node at (-40:\repsilon) [below right] {$\varepsilon$}; + +\draw[color=darkred,line width=1.4pt] + ({\A-180}:\R) arc ({\A-180}:{180-\A}:\R) + -- + ({-sqrt(\R*\R-\d*\d)},\d) + -- + %({-sqrt(\repsilon*\repsilon-\d*\d)},\d) + ({180-\a}:\repsilon) arc ({180-\a}:{\a-180}:\repsilon) + -- + ({-sqrt(\R*\R-\d*\d)},-\d) + -- + cycle; + +\fill[color=blue] (1,0) circle[radius=0.04]; +\node[color=blue] at (1,0) [above] {$1$}; + +\node[color=darkred] at (120:\R) [above left] {$\gamma$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/080-funktionentheorie/uebungsaufgaben/1.tex b/buch/chapters/080-funktionentheorie/uebungsaufgaben/1.tex new file mode 100644 index 0000000..8bc276f --- /dev/null +++ b/buch/chapters/080-funktionentheorie/uebungsaufgaben/1.tex @@ -0,0 +1,55 @@ +Verwenden Sie die Eulersche Spiegelungsformel um +\[ +S_n += +\sum_{k=1}^n +\Gamma\biggl(\frac{1+2k}2\biggr)\Gamma\biggl(\frac{1-2k}2\biggr) +\] +zu berechnen. + +\begin{loesung} +Zunächst beachten wir, dass +\[ +1 - \frac{1+2k}2 += +\frac{1-2k}2. +\] +Dies bedeutet, dass +\[ +\Gamma\biggl(\frac{1+2k}2\biggr) +\Gamma\biggl(\frac{1-2k}2\biggr) += +\Gamma\biggl(\frac{1+2k}2\biggr) +\Gamma\biggl(1-\frac{1+2k}2\biggr) += +\frac{\pi}{ +\sin\pi\frac{1+2k}2 +} += +\frac{\pi}{\sin(2k+1)\frac{\pi}2} +\] +nach der Eulerschen Spiegelungsformel. +Das Argument der Sinus-Funktion ist ein ungerades Vielfaches +von $\frac{\pi}2$, die Sinus-Funktion hat dort die Werte $\pm 1$, +genauer +\[ +\sin(2k+1)\frac{\pi}2 += +(-1)^k. +\] +Damit wird die gesuchte Summe: +\[ +S_n += +\sum_{k=1}^n +\frac{\pi}{(-1)^k} += +-\pi+\pi-\pi+\dots+(-1)^n\pi += +\begin{cases} +0&\qquad\text{$n$ gerade}\\ +-\pi&\qquad\text{$n$ ungerade}. +\end{cases} +\qedhere +\] +\end{loesung} diff --git a/buch/chapters/080-funktionentheorie/uebungsaufgaben/2.tex b/buch/chapters/080-funktionentheorie/uebungsaufgaben/2.tex new file mode 100644 index 0000000..48e9bdc --- /dev/null +++ b/buch/chapters/080-funktionentheorie/uebungsaufgaben/2.tex @@ -0,0 +1,31 @@ +Verwenden Sie die Legendresche Verdoppelungsformel und +die Eulersche Spiegelungsformel für die Gamma-Funktion, +um $\Gamma(\frac14)\Gamma(\frac34)$ zu berechnen und +verifizieren Sie, dass beide Wege das gleiche Resultat geben. + +\begin{loesung} +Aus der Spiegelungsformel für $x=\frac14$ folgt +\[ +\Gamma({\textstyle\frac14})\Gamma({\textstyle\frac34}) += +\frac{\pi}{\sin\frac{\pi}4} += +\frac{\pi}{1/\sqrt{2}} += +\pi\sqrt{2}. +\] +Andererseits ist $\frac34=\frac14+\frac12$, so dass aus der Legendreschen +Verdoppelungsformel folgt +\[ +\Gamma({\textstyle\frac14})\Gamma({\textstyle\frac34}) += +2^{1-2\cdot \frac14}\sqrt{\pi}\Gamma(2\cdot {\textstyle\frac14}) += +\sqrt{2} +\sqrt{\pi}\Gamma({\textstyle\frac12}) += +\sqrt{2} +\pi. +\] +Offensichtlich stimmen die beiden Resultate überein. +\end{loesung} diff --git a/buch/common/packages.tex b/buch/common/packages.tex index 233f6ba..342bf7b 100644 --- a/buch/common/packages.tex +++ b/buch/common/packages.tex @@ -19,6 +19,7 @@ \usepackage{fancyhdr} \usepackage{textcomp} \usepackage{txfonts} +\usepackage{nicefrac} \newcommand\hmmax{0} \newcommand\bmmax{0} \usepackage{bm} |