diff options
author | Erik Löffler <100943759+erik-loeffler@users.noreply.github.com> | 2022-08-17 15:53:40 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-08-17 15:53:40 +0200 |
commit | 3802a2bf722c1eb58d4b0f31eca9a4174eced3b0 (patch) | |
tree | 3e3392f06238e3c4516fe735ae387ce54c0b27ba /buch | |
parent | Merge branch 'AndreasFMueller:master' into master (diff) | |
parent | Revised solution properties section. (diff) | |
download | SeminarSpezielleFunktionen-3802a2bf722c1eb58d4b0f31eca9a4174eced3b0.tar.gz SeminarSpezielleFunktionen-3802a2bf722c1eb58d4b0f31eca9a4174eced3b0.zip |
Merge pull request #7 from haddoucher/sturmliouville/erik-branch
Sturmliouville/erik-branch
Diffstat (limited to '')
-rw-r--r-- | buch/papers/sturmliouville/eigenschaften.tex | 32 | ||||
-rw-r--r-- | buch/papers/sturmliouville/waermeleitung_beispiel.tex | 16 |
2 files changed, 26 insertions, 22 deletions
diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index 85f0bf3..bef8a39 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -37,31 +37,35 @@ für die Lösungen des Sturm-Liouville-Problems zur Folge hat. \subsubsection{Exkurs zum Spektralsatz} -Um zu verstehen was für Eigenschaften der selbstadjungierte Operator $L_0$ in +Um zu verstehen welche Eigenschaften der selbstadjungierte Operator $L_0$ in den Lösungen hervorbringt, wird der Spektralsatz benötigt. Dieser wird in der linearen Algebra oft verwendet um zu zeigen, dass eine Matrix diagonalisierbar ist, beziehungsweise dass eine Orthonormalbasis existiert. -Dazu wird zunächst gezeigt, dass eine gegebene $n\times n$-Matrix $A$ aus einem -endlichdimensionalem $\mathbb{K}$-Vektorraum selbstadjungiert ist, also dass + +Im Fall einer gegebenen $n\times n$-Matrix $A$ mit reellen Einträgen wird dazu +zunächst gezeigt, dass $A$ selbstadjungiert ist, also dass \[ \langle Av, w \rangle = \langle v, Aw \rangle \] -für $ v, w \in \mathbb{K}^n$ gilt. -Ist dies der Fall, folgt direkt, dass $A$ auch normal ist. -Dann wird die Aussage des Spektralsatzes -\cite{sturmliouville:spektralsatz-wiki} verwended, welche besagt, dass für -Endomorphismen genau dann eine Orthonormalbasis aus Eigenvektoren existiert, -wenn sie normal sind und nur Eigenwerte aus $\mathbb{K}$ besitzten. +für $ v, w \in \mathbb{R}^n$ gilt. +Ist dies der Fall, kann die Aussage des Spektralsatzes +\cite{sturmliouville:spektralsatz-wiki} verwended werden. +Daraus folgt dann, dass eine Orthonormalbasis aus Eigenvektoren existiert, +wenn $A$ nur Eigenwerte aus $\mathbb{R}$ besitzt. Dies ist allerdings nicht die Einzige Version des Spektralsatzes. -Unter anderen gibt es den Spektralsatz für kompakte Operatoren -\cite{sturmliouville:spektralsatz-wiki}. -Dieser besagt, dass wenn ein linearer kompakter Operator in -$\mathbb{R}$ selbstadjungiert ist, ein (eventuell endliches) -Orthonormalsystem existiert. +Unter anderen gibt es den Spektralsatz für kompakte Operatoren +\cite{sturmliouville:spektralsatz-wiki}, welcher für das +Sturm-Liouville-Problem von Bedeutung ist. +Welche Voraussetzungen erfüllt sein müssen, um diese Version des +Satzes verwenden zu können, wird hier aber nicht diskutiert und kann bei den +Beispielen in diesem Kapitel als gegeben betrachtet werden. +Grundsätzlich ist die Aussage in dieser Version dieselbe, wie bei den Matrizen, +also dass für ein Operator eine Orthonormalbasis aus Eigenvektoren existiert, +falls er selbstadjungiert ist. \subsubsection{Anwendung des Spektralsatzes auf $L_0$} diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 7a37b2b..a72c562 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -20,7 +20,7 @@ die partielle Differentialgleichung \frac{\partial u}{\partial t} = \kappa \frac{\partial^{2}u}{{\partial x}^{2}}, \end{equation} -wobei der Stab in diesem Fall auf der X-Achse im Intervall $[0,l]$ liegt. +wobei der Stab in diesem Fall auf der $X$-Achse im Intervall $[0,l]$ liegt. Da diese Differentialgleichung das Problem allgemein für einen homogenen Stab beschreibt, werden zusätzliche Bedingungen benötigt, um beispielsweise @@ -35,7 +35,7 @@ Tempreatur gehalten werden. Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene Temperatur zurückgeben darf. Diese wird einfachheitshalber als $0$ angenomen. -Es folgen nun +Es folgt nun \begin{equation} \label{sturmliouville:eq:example-fourier-boundary-condition-ends-constant} u(t,0) @@ -52,7 +52,7 @@ als Randbedingungen. \subsubsection{Randbedingungen für Stab mit isolierten Enden} -Bei isolierten Enden des Stabes können belibige Temperaturen für $x = 0$ und +Bei isolierten Enden des Stabes können beliebige Temperaturen für $x = 0$ und $x = l$ auftreten. In diesem Fall ist es nicht erlaubt, dass Wärme vom Stab an die Umgebung oder von der Umgebung an den Stab abgegeben wird. @@ -187,7 +187,7 @@ somit auch zu orthogonalen Lösungen führen. % Lösung von X(x), Teil mu % -\subsubsection{Lösund der Differentialgleichung in x} +\subsubsection{Lösund der Differentialgleichung in $x$} Als erstes wird auf die Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingegangen. Aufgrund der Struktur der Gleichung @@ -473,7 +473,7 @@ berechnet: \\ 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx =& - a_0 \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx + a_0 \int_{-l}^{l}\cos\left(\frac{m \pi}{l}x\right) dx + \sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right) \cos\left(\frac{m \pi}{l}x\right)dx\right] @@ -487,7 +487,7 @@ berechnet: Betrachtet man nun die Summanden auf der rechten Seite stellt man fest, dass nahezu alle Terme verschwinden, denn \[ - \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx + \int_{-l}^{l}\cos\left(\frac{m \pi}{l}x\right) dx = 0, \] @@ -528,10 +528,10 @@ mit $u = \frac{m \pi}{l}x$ substituiert wird: \frac{\sin\left(2u\right)}{4}\right]_{u=-m\pi}^{m\pi} \\ &= - a_m\frac{l}{m\pi}\left(\frac{m\pi}{2} + + a_m\frac{l}{m\pi}\biggl(\frac{m\pi}{2} + \underbrace{\frac{\sin\left(2m\pi\right)}{4}}_{\displaystyle = 0} - \frac{-m\pi}{2} - - \underbrace{\frac{\sin\left(-2m\pi\right)}{4}}_{\displaystyle = 0}\right) + \underbrace{\frac{\sin\left(-2m\pi\right)}{4}}_{\displaystyle = 0}\biggr) \\ &= a_m l |