aboutsummaryrefslogtreecommitdiffstats
path: root/buch
diff options
context:
space:
mode:
authorErik Löffler <100943759+erik-loeffler@users.noreply.github.com>2022-08-17 15:53:40 +0200
committerGitHub <noreply@github.com>2022-08-17 15:53:40 +0200
commit3802a2bf722c1eb58d4b0f31eca9a4174eced3b0 (patch)
tree3e3392f06238e3c4516fe735ae387ce54c0b27ba /buch
parentMerge branch 'AndreasFMueller:master' into master (diff)
parentRevised solution properties section. (diff)
downloadSeminarSpezielleFunktionen-3802a2bf722c1eb58d4b0f31eca9a4174eced3b0.tar.gz
SeminarSpezielleFunktionen-3802a2bf722c1eb58d4b0f31eca9a4174eced3b0.zip
Merge pull request #7 from haddoucher/sturmliouville/erik-branch
Sturmliouville/erik-branch
Diffstat (limited to '')
-rw-r--r--buch/papers/sturmliouville/eigenschaften.tex32
-rw-r--r--buch/papers/sturmliouville/waermeleitung_beispiel.tex16
2 files changed, 26 insertions, 22 deletions
diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex
index 85f0bf3..bef8a39 100644
--- a/buch/papers/sturmliouville/eigenschaften.tex
+++ b/buch/papers/sturmliouville/eigenschaften.tex
@@ -37,31 +37,35 @@ für die Lösungen des Sturm-Liouville-Problems zur Folge hat.
\subsubsection{Exkurs zum Spektralsatz}
-Um zu verstehen was für Eigenschaften der selbstadjungierte Operator $L_0$ in
+Um zu verstehen welche Eigenschaften der selbstadjungierte Operator $L_0$ in
den Lösungen hervorbringt, wird der Spektralsatz benötigt.
Dieser wird in der linearen Algebra oft verwendet um zu zeigen, dass eine Matrix
diagonalisierbar ist, beziehungsweise dass eine Orthonormalbasis existiert.
-Dazu wird zunächst gezeigt, dass eine gegebene $n\times n$-Matrix $A$ aus einem
-endlichdimensionalem $\mathbb{K}$-Vektorraum selbstadjungiert ist, also dass
+
+Im Fall einer gegebenen $n\times n$-Matrix $A$ mit reellen Einträgen wird dazu
+zunächst gezeigt, dass $A$ selbstadjungiert ist, also dass
\[
\langle Av, w \rangle
=
\langle v, Aw \rangle
\]
-für $ v, w \in \mathbb{K}^n$ gilt.
-Ist dies der Fall, folgt direkt, dass $A$ auch normal ist.
-Dann wird die Aussage des Spektralsatzes
-\cite{sturmliouville:spektralsatz-wiki} verwended, welche besagt, dass für
-Endomorphismen genau dann eine Orthonormalbasis aus Eigenvektoren existiert,
-wenn sie normal sind und nur Eigenwerte aus $\mathbb{K}$ besitzten.
+für $ v, w \in \mathbb{R}^n$ gilt.
+Ist dies der Fall, kann die Aussage des Spektralsatzes
+\cite{sturmliouville:spektralsatz-wiki} verwended werden.
+Daraus folgt dann, dass eine Orthonormalbasis aus Eigenvektoren existiert,
+wenn $A$ nur Eigenwerte aus $\mathbb{R}$ besitzt.
Dies ist allerdings nicht die Einzige Version des Spektralsatzes.
-Unter anderen gibt es den Spektralsatz für kompakte Operatoren
-\cite{sturmliouville:spektralsatz-wiki}.
-Dieser besagt, dass wenn ein linearer kompakter Operator in
-$\mathbb{R}$ selbstadjungiert ist, ein (eventuell endliches)
-Orthonormalsystem existiert.
+Unter anderen gibt es den Spektralsatz für kompakte Operatoren
+\cite{sturmliouville:spektralsatz-wiki}, welcher für das
+Sturm-Liouville-Problem von Bedeutung ist.
+Welche Voraussetzungen erfüllt sein müssen, um diese Version des
+Satzes verwenden zu können, wird hier aber nicht diskutiert und kann bei den
+Beispielen in diesem Kapitel als gegeben betrachtet werden.
+Grundsätzlich ist die Aussage in dieser Version dieselbe, wie bei den Matrizen,
+also dass für ein Operator eine Orthonormalbasis aus Eigenvektoren existiert,
+falls er selbstadjungiert ist.
\subsubsection{Anwendung des Spektralsatzes auf $L_0$}
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
index 7a37b2b..a72c562 100644
--- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex
+++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
@@ -20,7 +20,7 @@ die partielle Differentialgleichung
\frac{\partial u}{\partial t} =
\kappa \frac{\partial^{2}u}{{\partial x}^{2}},
\end{equation}
-wobei der Stab in diesem Fall auf der X-Achse im Intervall $[0,l]$ liegt.
+wobei der Stab in diesem Fall auf der $X$-Achse im Intervall $[0,l]$ liegt.
Da diese Differentialgleichung das Problem allgemein für einen homogenen
Stab beschreibt, werden zusätzliche Bedingungen benötigt, um beispielsweise
@@ -35,7 +35,7 @@ Tempreatur gehalten werden.
Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die
Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene
Temperatur zurückgeben darf. Diese wird einfachheitshalber als $0$ angenomen.
-Es folgen nun
+Es folgt nun
\begin{equation}
\label{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}
u(t,0)
@@ -52,7 +52,7 @@ als Randbedingungen.
\subsubsection{Randbedingungen für Stab mit isolierten Enden}
-Bei isolierten Enden des Stabes können belibige Temperaturen für $x = 0$ und
+Bei isolierten Enden des Stabes können beliebige Temperaturen für $x = 0$ und
$x = l$ auftreten. In diesem Fall ist es nicht erlaubt, dass Wärme vom Stab
an die Umgebung oder von der Umgebung an den Stab abgegeben wird.
@@ -187,7 +187,7 @@ somit auch zu orthogonalen Lösungen führen.
% Lösung von X(x), Teil mu
%
-\subsubsection{Lösund der Differentialgleichung in x}
+\subsubsection{Lösund der Differentialgleichung in $x$}
Als erstes wird auf die
Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingegangen.
Aufgrund der Struktur der Gleichung
@@ -473,7 +473,7 @@ berechnet:
\\
2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
=&
- a_0 \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx
+ a_0 \int_{-l}^{l}\cos\left(\frac{m \pi}{l}x\right) dx
+
\sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right)
\cos\left(\frac{m \pi}{l}x\right)dx\right]
@@ -487,7 +487,7 @@ berechnet:
Betrachtet man nun die Summanden auf der rechten Seite stellt man fest, dass
nahezu alle Terme verschwinden, denn
\[
- \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx
+ \int_{-l}^{l}\cos\left(\frac{m \pi}{l}x\right) dx
=
0,
\]
@@ -528,10 +528,10 @@ mit $u = \frac{m \pi}{l}x$ substituiert wird:
\frac{\sin\left(2u\right)}{4}\right]_{u=-m\pi}^{m\pi}
\\
&=
- a_m\frac{l}{m\pi}\left(\frac{m\pi}{2} +
+ a_m\frac{l}{m\pi}\biggl(\frac{m\pi}{2} +
\underbrace{\frac{\sin\left(2m\pi\right)}{4}}_{\displaystyle = 0} -
\frac{-m\pi}{2} -
- \underbrace{\frac{\sin\left(-2m\pi\right)}{4}}_{\displaystyle = 0}\right)
+ \underbrace{\frac{\sin\left(-2m\pi\right)}{4}}_{\displaystyle = 0}\biggr)
\\
&=
a_m l