aboutsummaryrefslogtreecommitdiffstats
path: root/buch
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2022-07-01 18:40:19 +0200
committerAndreas Müller <andreas.mueller@ost.ch>2022-07-01 18:40:19 +0200
commit70287f9b87cf4492e639ce2a191708c3265e75a3 (patch)
tree7d60b90536e31c5804ea4ccd0844dd17bbc61241 /buch
parentEinleitung fertig (diff)
downloadSeminarSpezielleFunktionen-70287f9b87cf4492e639ce2a191708c3265e75a3.tar.gz
SeminarSpezielleFunktionen-70287f9b87cf4492e639ce2a191708c3265e75a3.zip
complete chapter 9
Diffstat (limited to '')
-rw-r--r--buch/chapters/080-funktionentheorie/analytisch.tex33
-rw-r--r--buch/chapters/080-funktionentheorie/anwendungen.tex3
-rw-r--r--buch/chapters/080-funktionentheorie/cauchy.tex10
-rw-r--r--buch/chapters/080-funktionentheorie/holomorph.tex3
4 files changed, 47 insertions, 2 deletions
diff --git a/buch/chapters/080-funktionentheorie/analytisch.tex b/buch/chapters/080-funktionentheorie/analytisch.tex
index 15ca2e4..3095cc1 100644
--- a/buch/chapters/080-funktionentheorie/analytisch.tex
+++ b/buch/chapters/080-funktionentheorie/analytisch.tex
@@ -140,7 +140,38 @@ von $\mathbb{C}$ gegen $f(z)=\overline{z}$ konvergiert.
%
\subsection{Konvergenzradius
\label{buch:funktionentheorie:subsection:konvergenzradius}}
+In der Theorie der Potenzreihen, die man in einem grundlegenden
+Analysiskurs lernt, wird auch genauer untersucht, wie gross
+eine Umgebung des Punktes $z_0$ ist, in der die Potenzreihe
+im Punkt $z_0$ einer analytischen Funktion konvergiert.
-% XXX auf dem Rand des Konvergenzkreises gibt es immer eine Singularität
+\begin{satz}
+\label{buch:funktionentheorie:satz:konvergenzradius}
+Die Potenzreihe
+\[
+f(z) = \sum_{k=0}^\infty a_0(z-z_0)^k
+\]
+ist konvergent auf einem Kreis mit Radius $\varrho$ und
+\[
+\frac{1}{\varrho}
+=
+\limsup_{n\to\infty} \sqrt[k]{|a_k|}.
+\]
+Falls $a_k\ne 0$ für alle $k$ und der folgende Grenzwert existiert,
+dann gilt auch
+\[
+\varrho = \lim_{n\to\infty} \biggl| \frac{a_n}{a_{n+1}}\biggr|.
+\]
+\end{satz}
+
+\begin{definition}
+\label{buch:funktionentheorie:definition:konvergenzradius}
+\index{Konvergenzradius}%
+Der in Satz~\ref{buch:funktionentheorie:satz:konvergenzradius}
+Radius $\varrho$ des Konvergenzkreises heisst {\em Konvergenzradius}.
+\end{definition}
+Man kann auch zeigen, dass der Konvergenzkreis immer so gross ist,
+dass auf seinem Rand ein Wert $z$ liegt, für den die Potenzreihe nicht
+konvergiert.
diff --git a/buch/chapters/080-funktionentheorie/anwendungen.tex b/buch/chapters/080-funktionentheorie/anwendungen.tex
index 04c597e..440d2d3 100644
--- a/buch/chapters/080-funktionentheorie/anwendungen.tex
+++ b/buch/chapters/080-funktionentheorie/anwendungen.tex
@@ -6,6 +6,9 @@
\section{Anwendungen
\label{buch:funktionentheorie:section:anwendungen}}
\rhead{Anwendungen}
+In diesem Abschnitt wird die Theorie der komplex differenzierbaren
+Funktionen dazu verwendet, einige früher bereits verwendete oder
+angedeutete Resultate herzuleiten.
\input{chapters/080-funktionentheorie/gammareflektion.tex}
\input{chapters/080-funktionentheorie/carlson.tex}
diff --git a/buch/chapters/080-funktionentheorie/cauchy.tex b/buch/chapters/080-funktionentheorie/cauchy.tex
index 21d8dcf..58504db 100644
--- a/buch/chapters/080-funktionentheorie/cauchy.tex
+++ b/buch/chapters/080-funktionentheorie/cauchy.tex
@@ -6,6 +6,16 @@
\section{Cauchy-Integral
\label{buch:funktionentheorie:section:cauchy}}
\rhead{Cauchy-Integral}
+In Abschnitt~\ref{buch:funktionentheorie:section:holomorph} hat sich
+bereits gezeigt, dass komplexe Differenzierbarkeit einer komplexen
+Funktion weit mehr Einschränkungen auferlegt als reelle Differenzierbarkeit.
+Sowohl der Real- wie auch der Imaginärteil müssenharmonische Funktionen
+sein.
+In diesem Abschnitt wird die Cauchy-In\-te\-gral\-formel etabliert, die
+sogar zeigt, dass eine komplex differenzierbare Funktion bereits durch
+die Werte auf dem Rand eines einfach zusammenhängenden Gebietes
+gegeben ist, beliebig oft differenzierbar ist und ausserdem immer
+analytisch ist.
%
% Wegintegrale und die Cauchy-Formel
diff --git a/buch/chapters/080-funktionentheorie/holomorph.tex b/buch/chapters/080-funktionentheorie/holomorph.tex
index c87b083..dfe2744 100644
--- a/buch/chapters/080-funktionentheorie/holomorph.tex
+++ b/buch/chapters/080-funktionentheorie/holomorph.tex
@@ -83,6 +83,7 @@ Der Term $x-x_0$ und die Gleichung \eqref{komplex:abldef} sind aber auch
für komplexe Argument sinnvoll, wir definieren daher
\begin{definition}
+\label{buch:funktionentheorie:definition:differenzierbar}
Die komplexe Funktion $f(z)$ heisst im Punkt $z_0$ komplex differenzierbar
und hat die komplexe Ableitung $f'(z_0)\in\mathbb C$, wenn
\index{komplex differenzierbar}%
@@ -258,11 +259,11 @@ Der Operator
\frac{\partial^2}{\partial y^2}
\]
heisst der {\em Laplace-Operator} in zwei Dimensionen.
-
\index{Laplace-Operator}%
\end{definition}
\begin{definition}
+\label{buch:funktionentheorie:definition:harmonisch}
Eine Funktion $h(x,y)$ von zwei Variablen heisst {\em harmonisch}, wenn sie
die Gleichung
\[